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RESUMO

CHERTO, C. Dois Teoremas Clássicos em Análise Matemática. 2021. 35 p. Monografia (Bacharelado em

Matemática) – Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2o Semestre de 2021.

Estudamos o Teorema de Ascoli-Arzelà e o Teorema de Stone-Weierstrass em três ambientes: na reta, em

espaços métricos e em espaços topológicos. Investigamos as dificuldades que surgem ao tentar generalizar

um resultado.

Palavras-chave: Análise, Espaços Métricos, Topologia, Teorema de Ascoli-Arzelà, Teorema de Stone-Weierstrass.
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ABSTRACT

CHERTO, C. Two Classic Theorems of Mathematical Analisis. 2021. 35 p. Monografia (Bacharelado em

Matemática) – Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2o Semestre de 2021.

We study the Ascoli-Arzelà Theorem and the Stone-Weierstrass Theorem in three diferent settings: the

real numbers, metric spaces and topological spaces. We investigate the difficulties that appear when trying

to generalize a result.

Keywords: Analysis, Metric Spaces, Topology, Ascoli-Arzelà Theorem, Stone-Weierstrass Theorem.
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Capítulo 1

Compacidade e Motivação

Apesar de ser extremamente importante, a ideia de compacidade pode parecer bastante confusa em

um primeiro momento. Faremos aqui uma discussão baseada no artigo [5] que visa proporcionar um

entendimento intuitivo desse conceito e motivar os teoremas que estudaremos neste trabalho.

Alguns dos objetos mais básicos que existem na mátemática são conjuntos finitos. Devido a essa ex-

trema simplicidade, quando os munimos de algum tipo de estrutura, eles costumam gozar de propriedades

especialmente boas, que não valem em geral. Por sorte, em muitos casos conseguimos encontrar conjuntos

“quase finitos”. Isto é, conjuntos que apesar de serem infinitos, se comportam, em relação à estrutura,

de forma similar aos conjuntos finitos. Esta ideia de conjuntos “quase finitos” aparece em várias áreas da

matemática, mas na topologia eles recebem o nome de espaços compactos.

O Teorema de Weierstrass no dá um exemplo de uma tal propriedade. Funções reais de domínio fi-

nito sempre assumem um valor máximo. Isso não é válido em geral, mas se o domínio for compacto e a

função real for contínua, o resultado é verdadeiro. Um outro exemplo é uma das caracterizações de es-

paços métricos compactos. Toda sequência em um conjunto finito admite uma subsequência constante.

Analogamente, toda sequência em um espaço métrico compacto admite uma subsequência convergente.

Assim, vemos que algumas das propriedades de conjuntos finitos podem ser parcialmente recuperadas em

espaços compactos.

Agora, consideramos duas propriedades de subconjuntos finitos da reta. Suponha que temos uma

função real de domínio finito. É fácil notar que podemos obter um “polinômio” que coincide com a função

dada. Por outro lado, suponha que E é um conjunto de funções reais definidas em um conjunto finito D.

Suponha também que, para cada x ∈ D, { f (x) : f ∈ E} é conjunto finito. Então E é um conjunto finito. De

fato, existe uma quantidade finita de funções possíveis dentro dessas restrições.

A pergunta natural a se fazer é se conseguimos encontrar versões análogas desses resultados que va-

lem para domínios compactos. Os teoremas estudados neste trabalho testemunham justamente que, com

algumas adaptações, isso é sim possível.

Por fim, notamos que esse entendimento intuitivo de compacidade pode ser extremamente útil, não
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apenas para identificar possíveis teoremas, como também para nos ajudar a prová-los. De fato, a demons-

tração do Teorema 3.1.1 pode ser motivada raciocinando em termos do caso finito.
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Capítulo 2

Preliminares

Neste trabalho, nosso objetivo foi estudar os teoremas de Ascoli-Arzelà e de Stone-Weierstrass em três

contextos: na reta, em espaços métricos e em espaços topológicos. Dessa forma, além de nos familiarizar

com as técnicas e ferramentas apropriadas para cada ambiente, também ganhamos um senso sobre como a

matemática evolui e como resultados podem ser generalizados.

Ambos os teoremas são afirmações sobre o espaço das funções contínuas definidas em um compacto. O

teorema de Ascoli-Arzelà nos dá uma condição necessária e suficiente para que um conjunto de tais funções

tenha fecho compacto. Por outro lado, o teorema de Stone-Weierstrass nos diz quando uma subálgebra

desse espaço é densa. Tendo em vista a imensa importância de funções contínuas e a grande utilidade de

conjuntos densos e compactos, é fácil perceber o valor dos dois teoremas.

Aqui destacaremos algumas definições e proposições básicas sobre espaços métricos e topológicos que

serão utilizadas no decorrer do texto. Por serem resultados simples e bem conhecidos, as proposições não

serão demonstradas.

Utilizaremos as notações B(a, r) e B[a, r] para denotar as bolas de centro a e raio r aberta e fechada

respectivamente. Além disso, se A é subconjunto de um espaço topológico, denotamos seu fecho por A.

Seja M um espaço métrico. M é dito totalmente limitado quando, para todo ε > 0, existe uma quantidade

finita de subconjuntos X1, X2, . . . , Xn, cada um com diâmetro menor do que ε, tais que M = X1 ∪ · · · ∪ Xn.

Proposição 2.0.1. Sejam M e N espaços métricos. Se M é compacto e f : M −→ N é contínua, então f é

uniformemente contínua.

Proposição 2.0.2. Sejam M e K espaços métricos, com K compacto. Seja f : M × K −→ N uma função contínua.

Dados a ∈ M e ε > 0, existe δ > 0 tal que d(x, a) < δ em M implica d( f (x, t), f (a, t)) < ε, qualquer que seja

t ∈ K.

Proposição 2.0.3 (Teorema de Weierstrass). Se K é um espaço topológico compacto e f : K −→ R é contínua,

então f atinge máximo e mínimo em K.

Sejam M, N espaços métricos. Utilizaremos C (M; N) para denotar o conjunto de todas as funções

contínuas f : M −→ N. Se M é compacto, para quaisquer f , g ∈ C (M; N) a função d( f (x), g(x)) é
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contínua, e portanto assume máximo em M. Daí, podemos munir C (M; N) da métrica

d( f , g) = sup
x∈M

d( f (x), g(x)).

Chamamos essa métrica de métrica da convergência uniforme. Ao falar do espaço C (M; N), a não ser que seja

dito o contrário, sempre utilizaremos esta métrica.

Similarmente, se M é espaço métrico compacto, podemos definir em C (M; R) a norma

∥ f ∥ = sup
x∈M

| f (x)|.

Ela será a norma usualmente escolhida em C (M; R).

Proposição 2.0.4 (Teorema de Dini). Seja M um espaço métrico compacto e ( fn) uma sequência de funções reais

e contínuas de M em R. Se ( fn) converge simplesmente para uma função contínua f : M −→ R e tem-se que

f1(x) ≤ f2(x) ≤ . . . para todo x ∈ M, então a convergência fn → f é uniforme em M.

Proposição 2.0.5 (Caracterizações de Espaços Métricos Compactos). As seguintes afirmações a respeito de um

espaço métrico M são equivalentes:

1. M é compacto;

2. Toda sequência de M possui uma subsequência convergente;

3. M é completo e totalmente limitado.

Corolário 2.0.6. Todo espaço métrico compacto M contém um subconjunto enumerável denso.

Dada uma quantidade infinita enumerável de espaços métricos (M1, d1), (M2, d2), · · · , considere M =

∏∞
i=1 Mi. Se x = (xi) e y = (yi) são dois elementos desse conjunto, podemos definir em M a métrica

d(x, y) =
∞

∑
i=1

1
2i ·

di(xi, yi)

1 + di(xi, yi)
.

Essa métrica é conhecida como métrica produto. Uma das razões dela ser extremamente útil é a seguinte

proposição:

Proposição 2.0.7. Uma sequência (xn) = (x1
n, x2

n, · · · ) em ∏∞
i=1 Mi converge para a = (a1, a2, · · · ) se, e somente

se, para cada i ∈ N a sequência (xi
n) em Mi converge para ai.

Intuitivamente, a proposição acima diz que para uma sequência em ∏∞
i=1 Mi convergir a a, é necessário e

suficiente que cada “coordenada” da sequência convirja à coordenada correspondente de a. Se temos várias

noções de convergência, cada uma correspondendo a uma propriedade, conseguimos então definir uma

convergência em um espaço maior que corresponde a todas essas propriedades serem simultaneamente

satisfeitas. Veremos um exemplo concreto na seção 4.2.
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A seguir, mostramos outra propriedade importante da métrica produto:

Proposição 2.0.8 (Teorema de Cantor-Tychonov). Para cada n ∈ N, seja Mn um espaço métrico. Então, o espaço

métrico M = ∏∞
n=1 Mn com a métrica produto é compacto se, e somente se, cada fator Mn é compacto.

Proposição 2.0.9. Um espaço vetorial normado tem dimensão finita se, e somente se, sua bola fechada unitária é

compacta.

Proposição 2.0.10. As seguintes afirmações a respeito de um espaço métrico M são equivalentes:

1. M é localmente compacto e separável;

2. Existem K1, K2, · · · compactos em M, com Kn ⊂ int Kn+1 para todo n ∈ N, tais que M =
⋃∞

n=1 Kn.

A maioria das proposições dessa seção podem ser encontrados em [3].
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Capítulo 3

Na Reta

Começamos estudando o caso mais simples, o da reta. Neste ambiente, temos a seguinte caracterização

extremamente útil de conjuntos compactos: Um subconjunto de R é compacto se, e somente se, é fechado

e limitado. Além disso, os reais são um conjunto completo. Essas e outras características do conjunto dos

reais facilitam as demonstrações e revelam equivalências e consequências novas dos teoremas.

3.1 O Teorema de Ascoli-Arzelà na Reta

Em Análise, é frequentemente útil saber se uma dada sequência de funções contínuas, definidas em

algum intervalo [a, b], tem uma subsequência que converge uniformemente para alguma função. Esta

versão do teorema de Ascoli-Arzelà nos levará a uma condição suficiente para garantir que isso acontece.

Mas primeiro precisamos definir o conceito de equicontinuidade.

Sejam M, N espaços métricos e F um conjunto de funções f : M −→ N. F é dito equicontínuo no ponto

a ∈ M quando, para todo ε > 0, existe δ > 0 tal que d(x, a) < δ implique d( f (x), f (a)) < ε, seja qual for

f ∈ F . Se F é equicontínuo em todos os pontos de M, F é dito equicontínuo.

Então, a equicontinuidade em a se assemelha muito ao conceito de continuidade em a, com a diferença

de que o mesmo δ precisa “funcionar” para todas as funções de F .

Também, para M, N espaços métricos e F um conjunto de funções f : M −→ N, dizemos que F é

uniformemente equicontínuo se, para ε > 0, existe δ > 0 tal que d(x, y) < δ implique d( f (x), f (y)) < ε, seja

qual for f ∈ F e sejam quais forem x, y ∈ M.

Não é difícil mostrar que, se o domínio das funções for compacto, todo conjunto equicontínuo é uni-

formemente equicontínuo. Por esta razão, no teorema seguinte estes dois conceitos serão tratados como

equivalentes.

Por fim, uma sequência de funções fn : M −→ N se diz equicontínua quando o conjunto { f1, f2, . . . } é

equicontínuo.

Devido às simplificações que decorrem de estarmos trabalhando com o caso real, o teorema, como apre-

sentaremos a seguir, pode parecer bem diferente das versões que veremos mais tarde. Quando estas formas
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alternativas do teorema forem visitadas, explicaremos por que ambas as formulações são equivalentes.

A demonstração que será apresentada aqui pode ser encontrada no capítulo 10 do livro [2].

Teorema 3.1.1 (Teorema de Ascoli-Arzelà na Reta). Seja C ([a, b], R) espaço métrico com a métrica da conver-

gência uniforme e F subconjunto limitado e equicontínuo de C ([a, b], R). Então F é totalmente limitado.

Demonstração: Seja ε > 0. Nosso objetivo é encontrar uma quantidade finita de conjuntos de diâmetro

menor do que ε que cubram F . Para isso, dada f ∈ F , encontraremos uma g a distância menor do que

ε/3 de f , de modo que f ∈ B(g; ε/3). Por fim, observaremos que existe uma quantidade finita de funções

g que podem ser obtidas através da técnica utilizada, o que conclui a prova.

Como F é limitado, existe algum M > 0 tal que, qualquer que seja f ∈ F ,

∥ f ∥ < M.

Como F é equicontínuo e as funções estão definidas em um conjunto compacto, ele é uniformemente

equicontínuo. Logo existe δ > 0 tal que

|x − y| < δ ⇒ | f (x)− f (y)| < ε

15
.

Particionaremos, agora, o intervalo [a, b], tomando a = x0 < x1 < · · · < xn = b, de modo que xj+1 − xj < δ,

para j = 0, 1, . . . , n − 1. Da mesma forma, particionamos o intervalo [−M, M], tomando −M = y0 < y1 <

· · · < ym = M, de modo que yk+1 − yk < ε/15, para k = 0, 1, . . . , m − 1.

Assim, o retângulo [a, b]× [−M, M], que contém o gráfico de todas as funções de F , fica subdividido

em subretângulos, cada um com base menor do que δ e altura menor do que ε/15.

Agora, tome f ∈ F . Para j = 1, 2, . . . , n, sempre existe i(j) ∈ {1, 2, . . . , m − 1} tal que yi(j) ≤ f (xj) ≤

yi(j)+1. Agora definimos uma função g pondo, para cada j, g(xj) = yi(j) e fazendo g ser um segmento de

reta que conecta os pontos (xj; g(xj)) e (xj+1; g(xj+1)) nos intervalos abertos (xj, xj+1). Obtemos assim uma

função contínua g de [a, b] em R que satisfaz, para todo j,

| f (xj)− g(xj)| <
ε

15
.

Assim, temos que

|g(xj+1)− g(xj)| ≤ |g(xj+1)− f (xj+1)|+ | f (xj+1)− f (xj)|+ | f (xj)− g(xj)|.

Utilizando a equicontinuidade de F e o fato de que o valor de g(xj) foi escolhido justamente para distar

menos do que ε/15 de f (xj), obtemos que

|g(xj+1)− g(xj)| <
ε

15
+

ε

15
+

ε

15
=

ε

5
.
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Dado x ∈ [a, b] qualquer, existe j ∈ {1, 2, . . . , n − 1} tal que xj ≤ x ≤ xj+1. Como g é monótona em cada

intervalo [xj, xj+1],

|g(x)− g(xj)| <
ε

5
.

Então,

| f (x)− g(x)| ≤ | f (x)− f (xj)|+ | f (xj)− g(xj)|+ |g(xj)− g(x)| < ε

15
+

ε

15
+

ε

5
=

ε

3
.

Como o intervalo [a, b] é compacto, pela Proposição 2.0.3,

∥ f − g∥ = sup
x∈[a,b]

| f (x)− g(x)| = max
x∈[a,b]

| f (x)− g(x)| < ε

3
.

Isto nos diz que f ∈ B(g, ε/3), cujo diâmetro é 2ε/3 < ε. Construindo uma g para cada f , temos que F

estará contido na união das bolas centradas nas funções g e de raio ε/3. Mas, cada g é determinada unica-

mente escolhendo, para cada um dos n + 1 pontos xj, um valor yk, sendo que existem m + 1 possibilidades.

Existem, portanto, apenas (m + 1)n+1 possíveis funções g, de modo que F pode ser coberto utilizando um

número finito de conjuntos de diâmetro menor que ε.

Agora, utilizamos o Teorema 3.1.1 para provar o resultado desejado.

Corolário 3.1.2. Seja ( fn) uma sequência equicontínua e limitada em C ([a, b]; R). Então ( fn) possui uma sub-

sequência que converge uniformemente para alguma função de C ([a, b]; R).

Demonstração: Pelo Teorema 3.1.1, F é totalmente limitado. Daí, o seu fecho F é totalmente limitado.

Como F é fechado e está contido em C ([a, b]; R), que é completo, F é completo. Como é completo e

totalmente limitado, pela Proposição 2.0.5, toda sequência de F tem uma subsequência que converge. Em

particular, ( fn) tem uma subsequência que converge uniformemente em C ([a, b]; R).

3.2 O Teorema de Aproximação de Weierstrass

Agora veremos um caso particular do Teorema de Stone-Weierstrass na reta, que historicamente veio

antes dele. Aqui fica evidente uma outra facilidade de se trabalhar com os reais: podemos utilizar a inte-

gração como uma ferramenta. Em contextos mais gerais, precisaremos utilizar abordagens completamente

diferentes.

O Teorema de Aproximação de Weierstrass diz que qualquer função contínua definida em um intervalo

[a, b] pode ser aproximada, tão bem quanto se queira, por um polinômio. Esse teorema pode ser generali-

zado, de forma a obter o Teorema de Stone-Weierstrass, que diz respeito a espaços métricos compactos em

geral. Apresentaremos uma demonstração, devida a E. Landau, que utiliza o conceito de convolução para
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construir os polinômios que aproximam a função. Esta demonstração pode ser encontrada no capítulo 8

do livro [3].

Uma forma intuitiva de enxergar a convolução f ∗ φ é como uma técnica para regularizar a função f ,

construindo uma nova função cujo valor, no ponto x, é uma média ponderada feita em volta do ponto x de

f , onde φ é a função dos pesos. Imaginemos, agora, que φ é uma função contínua, positiva e que se anula

fora do intervalo [−δ, δ]. Além disso, impomos que
∫ +∞
−∞ φ(t) dt = 1. Então, ( f ∗ φ)(x) é a média ponderada

dos valores de f no intervalo [x − δ, x + δ]. Devido às condições que impusemos em φ e à continuidade de

f , à medida que escolhemos valores menores de δ, mais e mais ( f ∗ φ)(x) se aproxima do valor de f (x).

Dessa forma, vemos que é possível obter aproximações arbitrariamente boas da função f através da con-

volução, tomando valores de δ cada vez menores. Isto ainda não é suficiente, no entanto, pois precisamos

garantir que as funções que aproximem f sejam polinômios. Para isso, será preciso abrir mão da condição

imposta de que φ se anula fora do intervalo [−δ, δ], mas fazendo com que esse fato seja aproximadamente

verdadeiro, conseguiremos obter convoluções que aproximem f e resultem em polinômios, como veremos

a seguir.

Para cada n ∈ N, tomamos cn =
∫ +1
−1 (1 − t2)n dt. Definimos, então, φn : R −→ R pondo

φn(t) =


(1/cn)(1 − t2)n se t ∈ [−1, 1]

0 se t /∈ [−1, 1]
.

−1 −0.5 0.5 1

0.5

1

1.5

2

x

y φ1
φ2
φ3
φ10

Provaremos agora três lemas sobre a função φ. O primeiro nos garante que, para n suficientemente grande,

φn(x) será aproximadamente zero nas redondezas do ponto x = 0. É isso que vai garantir que a convolução

de f com φ aproxime f .

Lema 3.2.1. Se 0 < δ < 1, então limn→∞ φn(t) = 0 uniformemente para |t| ≥ δ.

Demonstração: Derivando φn(t) obtemos:

φ′
n(t) =

−2n
cn

· (1 − t2)n−1 · t.
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Como (−2n/cn) ≤ 0 e (1 − t2)n−1 ≥ 0, se −1 < t < 0, a derivada é positiva. Se 1 > t > 0, ela é negativa.

Assim a função é crescente em [-1,0] e decrescente em [0,1]. Portanto, ao provar que limn→∞ φn(−δ) = 0 e

limn→∞ φn(δ) = 0, fica provado o lema. Como a função é par, provar um desses limites é suficiente.

cn = 2
∫ 1

0
(1 − t2)n dt = 2

∫ 1

0
(1 − t)n(1 + t)n dt ≥ 2

∫ 1

0
(1 − t)n dt =

2
n + 1

.

Daí,

φn(δ) = (1/cn)(1 − δ2)n ≤ n + 1
2

· (1 − δ2)n.

Como 0 < 1 − δ2 < 1, segue que limn→∞(1 − δ2)n · (n + 1)/2 = 0.

O próximo lema nos garante que, dada uma função f , podemos estendê-la para R de modo que sua

convolução será restrição de um polinômio. Quando formos provar o teorema, veremos que é suficiente

que este lema e o próximo sejam demonstrados para o caso em que [a, b] = [0, 1] e que f (0) = f (1) = 0.

Lema 3.2.2. Seja f : [0, 1] −→ R contínua, com f (0) = f (1) = 0. Considere f definida em todo R, pondo

f (x) = 0 se x /∈ [0, 1]. Para n ∈ N, seja pn : [0, 1] −→ R com

pn(x) = ( f ∗ φ)(x) =
∫ +∞

−∞
f (x + t)φn(t) dt =

∫ +1

−1
f (x + t)φn(t) dt.

Então pn é restrição de um polinômio.

Demonstração: Fazendo a mudança de variável y = x + t obtemos

pn(x) =
∫ x+1

x−1
f (y)φn(y − x) dy.

Mas, como x ∈ [0, 1], temos que [0, 1] ⊂ [x − 1, x + 1], qualquer que seja x. Como f é nula fora de [0, 1],

obtemos que ∫ x+1

x−1
f (y)φn(y − x) dy =

∫ 1

0
f (y)φn(y − x) dy.

Como x, y ∈ [0, 1], x − y ∈ [−1, 1]. Substituíndo em φn obtemos

φn(y − x) =
1
cn
[1 − (y − x)2]n =

2n

∑
i=0

ξi(y)xi,

onde cada ξi é um coeficiente que depende de y. Como a integral é na variável y, as potências de x “saem”

de dentro dela. Assim, colocando ai =
∫ 1

0 f (y) · ξi(y) dy, obtemos

pn(x) =
2n

∑
i=0

ai · xi.
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O lema seguinte garante que os polinômios obtidos de fato aproximam a função f uniformemente.

Lema 3.2.3. Nas condições do lema anterior, tem-se limn→∞ pn = f uniformemente no intervalo [0, 1].

Demonstração: Como
∫ +1
−1 φn(t) dt = 1, temos que

f (x) =
∫ +1

−1
f (x)φn(t) dt.

Logo, para todo n ∈ N e todo x ∈ [0, 1], vale

pn(x)− f (x) =
∫ +1

−1
[ f (x + t)− f (x)]φn(t) dt.

Então,

| f (x)− pn(x)| ≤
∫ +1

−1
| f (x + t)− f (x)|φn(t) dt.

Para simplificar a notação, definimos I(x) =
∫ +1
−1 | f (x + t)− f (x)|φn(t) dt.

Seja ε > 0. Para demonstrar o lema, é suficiente encontrar n0 ∈ N tal que n > n0 ⇒ I(x) < ε para

todo x ∈ [0, 1]. Para fazer isso, fixando um dado x, separaremos I(x) em três pedaços. Os pedaços das

extremidades serão pequenos pois φn(t) se aproxima de zero longe do centro. O pedaço do meio é pequeno

pois a continuidade uniforme de f garante que | f (x + t)− f (x)| é pequeno para valores de t próximos de

zero. Passemos a considerações mais rigorosas.

Pela Proposição 2.0.1, f é uniformemente contínua. Daí, dado qualquer ε > 0, existe δ > 0 tal que

|t| < δ ⇒ | f (x + t)− f (x)| < ε/3, qualquer que seja x ∈ [0, 1]. Como | f | é contínua, pela Proposição 2.0.3

ela assume máximo. Tomamos M = maxx∈[0,1] | f (x)|. Pelo Lema 3.2.1, existe n0 ∈ N tal que n > n0,

|t| ≥ δ ⇒ |φn(t)| < ε/(6M). Logo, para todo n > n0 e todo x ∈ [0, 1] temos I(x) ≤ A + B + C, onde

A =
∫ −δ

−1
| f (x + t)− f (x)|φn(t) dt < 2M · ε

6M
=

ε

3
,

B =
∫ δ

−δ
| f (x + t)− f (x)|φn(t) dt <

ε

3

∫ δ

−δ
φn(t) dt ≤ ε

3
,

C =
∫ 1

δ
| f (x + t)− f (x)|φn(t) dt < 2M · ε

6M
=

ε

3
.

Logo, para n > n0 e x ∈ [0, 1], | f (x)− pn(x)| < ε.

Finalmente, provaremos o teorema.

Teorema 3.2.4 (Teorema de Aproximação de Weierstrass). Dada uma função contínua f : [a, b] −→ R, existe

uma sequência de polinômios pn tais que limn→∞ pn = f uniformemente em [a, b].

Demonstração: Utilizando os Lemas 3.2.2 e 3.2.3, o teorema está provado para o caso em que [a, b] = [0, 1]

e f (0) = f (1) = 0. Mostraremos, agora, que o caso geral se reduz a este.

12



Em primeiro lugar, dada uma função contínua g : [0, 1] −→ R, podemos facilmente construir uma

nova função f que satisfaça f (0) = f (1) = 0. Para tanto, basta tomar f : [0, 1] −→ R definida por

f (t) = g(t)− g(0)− t[g(1)− g(0)]. Tal f é limite uniforme de uma sequência de polinômios pn. Assim, g é

limite uniforme da sequência de polinômios pn(t) + t[g(1)− g(0)] + g(0). Isto é, qualquer função contínua

definida em [0, 1] é limite uniforme de polinômios.

Agora, tome uma função contínua h : [a, b] −→ R. Definindo g : [0, 1] −→ R, g(s) = h((1 − s)a + sb),

temos que g é limite uniforme de uma sequência de polinômios qn. Logo, qn((t − a)/(b − a)) é uma

sequência de polinômios que aproxima h uniformemente. Isso conclui a demonstração do teorema.

No caso especial em que a função f é de classe Ck, k ∈ N, a demonstração pode ser levemente modifi-

cada para mostrar que a i-ésima derivada de f (para 0 ≤ i ≤ k) é aproximada pela sequência das i-ésimas

derivadas dos polinômios pn. Mais do que isso, a demonstração pode ser adaptada para funções reais de

várias variáveis.

Uma consequência importante do Teorema de Aproximação de Weierstrass é que o espaço C ([a, b]; R)

é separável.
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Capítulo 4

Em Espaços Métricos

4.1 Teorema de Ascoli-Arzelà em Espaços Métricos

Aqui apresentaremos uma generalização do Teorema 3.1.1 para subconjuntos de C (K; N), onde K e N

são espaços métricos e K é compacto. Primeiro fazemos algumas definições.

Dizemos que um subconjunto X de um espaço métrico M é relativamente compacto quando seu fecho X

é compacto. Pela Proposição 2.0.5, isso equivale a dizer que toda sequência de X possui uma subsequência

convergente, a diferença aqui sendo que ela pode convergir para algum ponto fora de X.

Seja F um conjunto de funções f : M −→ N, onde M e N são espaços métricos. Dado x ∈ M,

denotaremos F (x) = { f (x) | f ∈ F }.

Lema 4.1.1. Se uma sequência equicontínua de aplicações fn : M −→ N converge simplesmente para f : M −→ N,

então o conjunto F = { f , f1, f2, . . . } é equicontínuo.

Demonstração: Dado a ∈ M e ε > 0, existe δ > 0 tal que d(x, a) < δ ⇒ d( fn(x), fn(a)) < ε/2, para todo

n ∈ N. Fazendo n → ∞, d( f (x), f (a)) ≤ ε/2 < ε. Então, para todo a ∈ M,

d(x, a) < δ ⇒ d(g(x), g(a)) < ε,

qualquer que seja g ∈ F .

O próximo lema é muito útil, pois nos diz que se as hipóteses são satisfeitas, é suficiente mostrar que

a sequência converge simplesmente para que fique provado que ela converge uniformemente. A demons-

tração consiste basicamente de usar a equicontinuidade para montar uma cobertura aberta e, através da

compacidade, extrair dela uma subcobertura finita.

Lema 4.1.2. Sejam M, N espaços métricos. Se uma sequência equicontínua de aplicações fn : M −→ N converge

simplesmente para f : M −→ N, então a convergência é uniforme em cada parte compacta K ⊂ M.
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Demonstração: Seja ε > 0. Pela convergência simples, para cada x ∈ M, existe nx ∈ N tal que n >

nx ⇒ d( fn(x), f (x)) < ε/3. Pelo Lema 4.1.1, { f , f1, f2, . . . } é equicontínuo. Logo, cada x ∈ M é centro

de uma bola aberta Bx tal que y ∈ Bx ⇒ d( fn(y), fn(x)) < ε/3 e d( f (y), f (x)) < ε/3. Então,
⋃

x∈K Bx é

cobertura aberta de K. Pela compacidade, existem x1, x2, . . . , xk ∈ M tais que K ⊂ Bx1 ∪ · · · ∪ Bxk . Tome

n0 = max{nx1 . . . , nxk}.

Se n > n0 e x ∈ K, então existe i ∈ {1, . . . , k} tal que x ∈ Bxi . Então,

d( fn(x), f (x)) ≤ d( fn(x), fn(xi)) + d( fn(xi), f (xi)) + d( f (xi), f (x)) <
ε

3
+

ε

3
+

ε

3
= ε,

o que prova o lema.

O lema seguinte usa o anterior de base e mostra que, se cada F (x) for completo, basta a sequência

convergir simplesmente em um conjunto denso para que a convergência seja uniforme em cada parte

compacta.

Lema 4.1.3. Sejam M, N espaços métricos e seja fn : M −→ N uma sequência equicontínua de funções. Denotemos

F = { f1, f2, . . . }. Suponha que para cada x ∈ M, o conjunto F (x) tem fecho completo em N. Daí, se ( fn) converge

simplesmente num subconjunto denso D ⊂ M, então ( fn) converge uniformemente em cada parte compacta de M.

Demonstração: Note que, pelo Lema 4.1.2, é suficiente mostrar que ( fn) converge simplesmente em todo

o espaço. Devido à completeza de F (x), é suficiente mostrar que, para todo x ∈ M, a sequência ( fn(x)) é

de Cauchy.

Tome ε > 0. Devido à equicontinuidade, para cada x ∈ M existe B(x, r) tal que se y ∈ B(x, r) ⇒

d( fn(y), fn(x)) < ε/3, para todo n ∈ N. Agora, seja y ∈ D ∩ B(x, r). Sabemos que a sequência ( fn(y))

converge, portanto é de Cauchy. Assim, tomando n0 ∈ N tal que m, n > n0 ⇒ d( fm(y), fn(y)) < ε/3,

temos

m, n > n0 ⇒ d( fm(x), fn(x)) ≤ d( fm(x), fm(y)) + d( fm(y), fn(y)) + d( fn(y), fn(x)) < ε,

o que mostra que a sequência é de Cauchy.

Passemos ao teorema. A demonstração que apresentaremos aqui pode ser encontrada no capítulo 8 do

livro [3].

Teorema 4.1.4 (Teorema de Ascoli-Arzelà em Espaços Métricos). Sejam K e N espaços métricos, com K com-

pacto. O subconjunto F ⊂ C (K; N) é relativamente compacto se, e somente se valem:

1. F é equicontínuo;

2. Para cada x ∈ K, o conjunto F (x) é relativamente compacto em N.
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Demonstração: Primeiro, suponha que F seja relativamente compacto. Para x ∈ K, seja vx : C (K; N) −→

N dada por vx( f ) = f (x). É um fato bem conhecido que esta função é contínua. Mas vx(F ) = F (x).

Como funções contínuas levam conjuntos compactos em conjuntos compactos, é fácil ver que elas levam

conjuntos relativamente compactos em conjuntos relativamente compactos. Concluímos, então, que F (x)

é relativamente compacto para todo x ∈ K.

Agora, tome a ∈ K qualquer e ε > 0. A função φ : F × K −→ R, definida por φ( f , x) = d( f (x), f (a)) é

contínua, pois composição de funções contínuas é contínua. Através da Proposição 2.0.2, usando apenas a

compacidade de F , obtemos δ > 0 tal que, para toda f ∈ F , com x, y ∈ K

d(x, a) < δ ⇒ |φ( f , x)− φ( f , a)| < ε.

Isto é,

d(x, a) < δ ⇒ |d( f (x), f (a))− d( f (a), f (a))| < ε

ou, mais precisamente,

d(x, a) < δ ⇒ d( f (x), f (a)) < ε.

Isto mostra que F é equicontínuo em todo ponto a ∈ K, o que implica que F também o é. Assim, as

condições (1) e (2) são necessárias para que F seja relativamente compacto.

Para a recíproca, basta mostrar que toda sequência de F tem uma subsequência que converge. Como

sabemos que, para todo x ∈ K, F (x) é compacto, ele será completo. Daí, pelo Lema 4.1.3, basta provar

que toda sequência de F tem uma subsequência que converge simplesmente em algum conjunto denso

D ⊂ K. Para isso, estabeleceremos uma relação entre as restrições das funções a D e pontos de um conjunto

compacto.

Seja D = {x1, x2, . . . } um subconjunto de K enumerável e denso, cuja existência é garantida pelo Coro-

lário 2.0.6. Para cada n ∈ N, seja Ln = F (xn) ⊂ N. Pela Proposição 2.0.8, o produto cartesiano L = ∏∞
i=1 Ln

é compacto. Agora, associamos cada f ∈ F ao ponto f ′ de L que tem f (xn) como sua n-ésima coordenada.

Note que f ′ é portanto, essencialmente a restrição de f a D. Consequentemente, a sequência de funções

( fn) converge simplesmente em D se, e somente se, a sequência ( f ′n) converge em L. Como L é compacto,

( f ′n) tem uma subsequência que converge, portanto a subsequência correspondente de ( fn) converge sim-

plesmente em D. Pelo Lema 4.1.3, isto implica que esta subsequência converge uniformemente em K. Logo,

F é relativamente compacto.

Agora observamos que, no caso em que N ⊂ R e K = [a, b] para a, b ∈ R e a < b, a volta do teorema

acima é apenas uma reformulação do Teorema 3.1.1. Fazemos isso mostrando que um pode facilmente ser

provado a partir do outro.

Suponha primeiro que F ⊂ C (K; N) é limitado e equicontínuo. A condição (1) do Teorema 4.1.4 está
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satisfeita. Além disso, como F é limitado, existe M ∈ R, M > 0, tal que ∥ f ∥ < M para todo f ∈ F .

Mas então, para todo x ∈ K e todo f ∈ F , | f (x)| < M. Portanto, F (x) ⊂ R é limitado. Mas, nos reais,

um conjunto fechado e limitado é compacto. Assim, F (x) é relativamente compacto. Isso mostra que a

condição (2) está satisfeita. Aplicando 4.1.4, temos que F é relativamente compacto. Mas, pelo Teorema

2.0.5, isso implica que F é totalmente limitado.

Agora, suponha que F é equicontínuo e que F (x) é relativamente compacto para todo x ∈ K. Quere-

mos mostrar que F é limitado, para poder usar o Teorema 4.1.4. Como o fecho de F (x) é limitado, F (x)

também é. Isto é, para x ∈ K, existe Mx > 0 tal que | f (x)| < Mx, para toda f ∈ F . Agora, tome x ∈ K.

Como F é equicontínuo, existe rx > 0 tal que |y − x| < rx =⇒ | f (y)− f (x)| < 1, ∀ f ∈ F . Mas então,

|y − x| < rx =⇒ f (y) < Mx + 1, ∀ f ∈ F . Como
⋃

x∈K B(x; rx) é uma cobertura aberta de K, podemos

extrair dela uma subcobertura finita B(x1; rx1) ∪ · · · ∪ B(xn; rxn). Tome M = max{Mx1 , · · · , Mxn}. Então,

se x ∈ K, existe j ∈ {1, · · · , n} tal que x ∈ B(xj; rxj). Daí, f (x) < Mxj + 1 < M + 1, para toda f ∈ F . Isso

prova que F é limitado.

4.2 Teorema de Ascoli-Arzelà em Espaços Métricos Localmente Compactos

Separáveis

Como já foi discutido quando o visitamos na reta, uma aplicação importante do Teorema de Ascoli-

Arzelà é como ferramenta para mostrar que uma sequência de funções contínuas definidas em um com-

pacto possui uma subsequência que converge uniformemente. Suponha, no entanto, que queremos estudar

uma sequência de funções definidas em um espaço métrico que não seja compacto. É fácil verificar que as

condições do Teorema 4.1.4 não são suficientes para garantir a convergência uniforme de uma subsequên-

cia em todo o espaço. De fato, tomando a sequência fn : R −→ R dada por fn(x) = x/n, é fácil verificar

que ela é equicontínua e limitada em cada x ∈ R. No entanto, nenhuma subsequência dela converge

uniformemente em toda a reta.

Por outro lado, podemos aplicar 4.1.4 em cada parte compacta K de R, concluindo assim que ( fn) possui

uma subsequência que converge uniformemente em K. Note, porém, que nada nos garante que é a mesma

subsequência que converge em cada compacto.

Com essa discussão em mente, podemos pensar em definir uma noção de convergência de sequências

de funções definidas em todo R, mais fraca do que a convergência uniforme, na qual dizemos que uma

sequência converge a uma função g se, em cada parte compacta de R, a sequência converge uniformemente

para g. Vejamos agora que, dados M e N espaços métricos, pode ser definida em C (M, N) uma métrica

que dá origem a essa noção de convergência, desde que M seja localmente compacto e separável. Note que

M não precisa ser compacto.

Primeiro, observe que poderíamos escolher m compactos L1, · · · , Lm em M e definir em C (M, N) a
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métrica

dm( f , g) = d( f |L1, g|L1) + · · ·+ d( f |Lm, g|Lm),

onde d é a métrica da convergência uniforme, que está bem definida quando nos restringimos a um pedaço

compacto do domínio. É fácil notar que se temos uma sequência ( fn) que converge para g segundo a mé-

trica dm, então ( fn) converge uniformemente para g em L1, L2, · · · , Lm. Na verdade, mesmo se a quantidade

de compactos fosse infinita enumerável, ainda poderíamos definir

dN( f , g) =
∞

∑
i=1

1
2i

d( f |Li, g|Li)

1 + d( f |Li, g|Li)
.

Novamente, se ( fn) convergisse para g segundo essa métrica, ( fn) convergiria uniformemente em L1, L2, · · · .

No entanto, isso ainda não é suficiente para garantir que a sequência convergiria em todos os compactos

do espaço, uma vez que a quantidade deles poderia ser não enumerável. Felizmente, como M é local-

mente compacto e separável, garantir a convergência em uma quantidade enumerável de compactos será

suficiente para garantir a convergência em todos eles.

De fato, pela Proposição 2.0.10, existem K1, K2, · · · compactos em M tais que Kn ⊂ int Kn+1 para todo

n ∈ N e M =
⋃∞

n=1 Kn. Seja K ⊂ M compacto. Daí, K ⊂ ⋃∞
n=1 int Kn é uma cobertura de K, da qual podemos

extrair uma subcobertura finita K ⊂ int Kn1 ∪ · · · ∪ int Knp . Assumindo, sem perda de generalidade, que

n1 < n2 < · · · < np, temos que int Kn1 ∪ · · · ∪ int Knp = int Knp ⊂ Knp . Então K ⊂ Knp . Assim, se ( fn)

converge a g em cada Ki, ela converge a g em todo compacto K de M, pois K estará dentro de algum Kj.

Então tomando

d∗( f , g) =
∞

∑
i=1

1
2i

d( f |Ki, g|Ki)

1 + d( f |Ki, g|Ki)
,

temos uma métrica em C (M, N) segundo a qual uma sequência ( fn) converge a g se, e somente se, ( fn)

converge a g uniformemente em cada parte compacta de M. Nosso objetivo, agora, é provar uma versão

do Teorema de Ascoli-Arzelà no espaço métrico (C (M, N), d∗).

Primeiro considere a função

φ : (C (M, N), d∗) −→
∞

∏
i=1

C (Ki, N)

dada por φ( f ) = ( f |Ki)i∈N. Se consideramos ∏∞
i=1 C (Ki, N) munido da métrica produto, então φ é uma

imersão isométrica.

Lema 4.2.1. A imagem de φ é subconjunto fechado de ∏∞
i=1 C (Ki, N).

Demonstração: Seja F a imagem de φ. Note que F é formado pelas sequências de funções u = (ui) tais

que i < j =⇒ ui = uj|Ki. Suponha, por contradição, que v = (vi) ∈ F e v /∈ F. Daí, existem i < j e x ∈ Ki

tais que vi(x) ̸= vj(x). Seja ε = |vi(x)− vj(x)| > 0. Tome u = (ui) ∈ F tal que d∗(u, v) < 1
2j

ε
2+ε . Como
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ui(x) = uj(x), pela desigualdade triangular,

ε = |vi(x)− vj(x)| ≤ |vi(x)− ui(x)|+ |uj(x)− vj(x)|

Então |ui(x) − vi(x)| ≥ ε/2 ou |uj(x) − vj(x)| ≥ ε/2 pois, caso ambas as afirmações fossem fal-

sas, haveria uma contradição. Como os dois casos são similares, suponha |ui(x) − vi(x)| ≥ ε/2. Então

d(ui, vi) ≥ ε/2. Uma vez que a função x/(1 + x) é crescente, temos

ε

2 + ε
=

ε/2
1 + ε/2

≤ d(ui, vi)

1 + d(ui, vi)
.

Mas então,

d∗(u, v) =
∞

∑
m=1

1
2m

d(um, vm)

1 + d(um, vm)
≥ 1

2i
d(ui, vi)

1 + d(ui, vi)
≥ 1

2i
ε

2 + ε
≥ 1

2j
ε

2 + ε
,

o que é uma contradição. Assim, F é fechado.

Agora, estamos prontos para enunciar o Teorema. A demonstração a seguir pode ser encontrada no

capítulo 8 do livro [3].

Teorema 4.2.2 (Teorema de Ascoli-Arzelà em Espaços Métricos Localmente Compactos e Separáveis). Se M

é espaço métrico localmente compacto e separável, então um conjunto E ⊂ (C (M, N), d∗) é relativamente compacto

se, e somente se valem:

1. E é equicontínuo;

2. E(x) ⊂ N é relativamente compacto, para cada x ∈ M.

Demonstração: Devido à isometria φ : (C (M, N), d∗) −→ F, temos que estes dois espaços são homeomor-

fos. Então E é relativamente compacto em (C (M, N), d∗) se, e somente se, φ(E) é relativamente compacto

em F. Mas, pelo Lema 4.2.1, F é fechado em ∏∞
i=1 C (Ki, N). Afirmamos que φ(E) é relativamente compacto

em F se, e somente se, φ(E) é relativamente compacto em ∏∞
i=1 C (Ki, N). De fato, se toda sequência em

φ(E) possui uma subsequência que converge para um elemento de F, a mesma subsequência converge

para um elemento de ∏∞
i=1 C (Ki, N). Por outro lado, se toda sequência em φ(E) possui uma subsequência

que converge a um elemento de ∏∞
i=1 C (Ki, N), como φ(E) ⊂ F e F é fechado, este elemento precisa estar

em F.

Então, E é relativamente compacto em (C (M, N), d∗) se, e somente se, φ(E) é relativamente compacto

em ∏∞
i=1 C (Ki, N). Mas, pela Proposição 2.0.8, para isso ocorrer é necessário e suficiente que cada projeção

pi(φ(E)) ⊂ C (Ki, N) seja relativamente compacta. Porém,

pi(φ(E)) = E|Ki (= { f |Ki : f ∈ E}).
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Como as condições (1) e (2) valem para E se, e somente se, valem para cada E|Ki, a demonstração segue

do Teorema 4.1.4.

Agora, usaremos o Teorema 4.2.2 para obter uma versão bem mais geral do Corolário 3.1.2, que pode

ser usada mesmo quando o domínio da sequência não é compacto.

Dizemos que um conjunto E de aplicações f : M −→ N é pontualmente limitado quando E(x) ⊂ N

é limitado para todo x ∈ M. Uma sequência é pontualmente limitada se o conjunto dos seus termos é

pontualmente limitado.

Corolário 4.2.3. Seja M espaço métrico localmente compacto separável e seja k ∈ N. Então toda sequência equicon-

tínua e pontualmente limitada de aplicações fn : M −→ Rk possui uma subsequência que converge uniformemente

em cada parte compacta de M.

Demonstração: De fato, em Rk, todo conjunto limitado é relativamente compacto. Basta, então, aplicar o

Teorema 4.2.2 ao conjunto E = { f1, f2, · · · }.

4.3 Teorema de Stone-Weierstrass em Espaços Métricos

Em 1937, M. Stone descobriu uma forma de generalizar o Teorema de Aproximação de Weierstrass,

fazendo com que ele agora se aplique a funções contínuas definidas em um espaço topológico X que apenas

precisa ser Hausdorff e compacto. Este é o chamado Teorema de Stone-Weierstrass. Veremos, primeiro, o

caso em que X é espaço métrico compacto. Começamos fazendo algumas definições.

Podemos definir uma multiplicação em C (M; R), tomando que para f , g ∈ C (M; R), f · g é a função

dada por ( f · g)(x) = f (x) · g(x).

Um subconjunto A ⊂ C (M; R) é dito subálgebra de C (M; R) se é espaço vetorial e se f , g ∈ A ⇒ f · g ∈

A. A intersecção de uma família arbitrária de subálgebras é subálgebra. Damos o nome de subálgebra

gerada por S ⊂ C (M; R) à intersecção de todas as subálgebras que contém S. Denotaremos esta subálgebra

por A(S). Observamos, ainda, que o fecho de uma subálgebra é subálgebra.

Usaremos as seguintes notações:

Dadas f , g : M −→ R, ( f ∨ g) e ( f ∧ g) são as funções de M sobre R dadas por ( f ∨ g)(x) =

max{ f (x), g(x)} e ( f ∧ g)(x) = min{ f (x), g(x)}, para todo x ∈ M. Se f e g forem contínuas, f ∨ g e

f ∧ g também serão.

Lema 4.3.1. Existe uma sequência de polinômios pn tais que limn→∞ pn(t) =
√

t uniformemente para t ∈ [0, 1]

Demonstração: O primeiro passo é construir uma sequência de polinômios cujo limite simples seja
√

t.

Esta sequência é definida indutivamente, pondo p0 = 0 e

pn+1(t) = pn(t) +
1
2
[t − p2

n(t)].

21



Para um dado t ∈ [0, 1], seja ft : [0, 1] −→ R, ft(x) = x + (t − x2)/2. Então f ′t (x) = 1 − x ≥ 0 para

todo x ∈ [0, 1]. Assim, ft é crescente. Além disso, ft(0) = t/2 e ft(
√

t) =
√

t. Portanto, se 0 ≤ x ≤
√

t,

então 0 ≤ t/2 ≤ ft(x) ≤
√

t. Sabemos que p0(t) = 0. Então 0 ≤ p0(t) ≤
√

t. Também sabemos que

p1(t) = ft(p0(t)). Logo, 0 ≤ p1(t) ≤
√

t. Daí p1(t) está no domínio de ft e p2(t) = ft(p1(t)), o que implica

que 0 ≤ p2(t) ≤
√

t. Por indução, para todo n ∈ N, 0 ≤ pn(t) ≤
√

t. É bom lembrar que esta desigualdade

vale para todo t ∈ [0, 1]. Usando ela, temos que

p2
n(t) ≤ t ⇒ −p2

n(t) ≥ −t ⇒ t − p2
n(t) ≥ 0 ⇒ t − p2

n(t)
2

≥ 0 ⇒ pn(t) +
t − p2

n(t)
2

≥ pn(t),

e portanto,

pn(t) ≤ pn+1(t).

Então, demonstramos que, dado t ∈ [0, 1], a sequência (pn(t)) é crescente e limitada por
√

t, portanto con-

verge. Para cada tal t, definimos φ(t) = limn→∞ pn(t). Fazendo n → ∞ na definição indutiva de pn+1(t),

obtemos φ(t) = φ(t) + (t − φ2(t))/2 o que implica φ(t) =
√

t. Pela Proposição 2.0.4, a convergência é

uniforme. Observe que pn(0) = 0, para todo n ∈ N.

Lema 4.3.2. Em qualquer intervalo compacto [a, b], a função f (x) = |x| pode ser uniformemente aproximada por

polinômios desprovidos de termo constante.

Demonstração: Primeiro, observamos que podemos assumir que o intervalo é da forma [−a, a] para algum

a > 0, uma vez que existe um intervalo dessa forma que contém o intervalo original. Mais do que isso, po-

demos supor que a = 1, uma vez que se (pn) é uma sequência de polinômios que aproxima |x| em [−1, 1],

tomando qn(t) = a · pn(t/a) obtemos uma sequência de polinômios que aproxima |x| em [−a, a]. Por

fim, tomando uma sequência pn de polinômios que aproxima
√

t em [0, 1], cuja existência é garantida pelo

Lema 4.3.1, temos que qn(t) = pn(t2), que é também sequência de polinômios, converge uniformemente

para
√

t2 = |t| quando t ∈ [−1, 1]. Como pn(0) = 0, qn(0) = 0 para todo n ∈ N. Isto é, os polinômios que

aproximam |x| são desprovidos de termo constante.

Lema 4.3.3. Sejam f , g : M −→ R funções contínuas no espaço métrico compacto M. Então | f | ∈ A( f ), f ∨ g ∈

A( f , g) e f ∧ g ∈ A( f , g). Consequentemente, se A ⊂ C (M; R) é uma subálgebra e f , f1, . . . , fn ∈ A então

| f | ∈ A, f1 ∨ · · · ∨ fn ∈ A, f1 ∧ · · · ∧ fn ∈ A.

Demonstração: Pela Proposição 2.0.3, f atinge máximo e mínimo em M. Sejam a = minx∈M f (x) e b =

maxx∈M f (x). Pelo Lema 4.3.2 podemos tomar pn : [a, b] −→ R uma sequência de polinômios desprovidos

de termos constantes que converge uniformemente para |x| em [a, b]. Então limn→∞ pn( f (x)) = | f (x)|

uniformemente em M. Note que pn ◦ f é uma função da forma c1 · f + c2 · f 2 + · · · + cn · f n, em que

c1, . . . , cn ∈ R. Portanto, (pn ◦ f ) ∈ A( f ). Daí, o limite da sequência pertence ao fecho de A( f ). Isto é,
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| f | ∈ A( f ). Mas então | f − g| ∈ A( f − g) ⊂ A( f , g). Não é difícil verificar que

f ∨ g =
1
2
[ f + g + | f − g|]

e

f ∧ g =
1
2
[ f + g − | f − g|].

Como o fecho de uma subálgebra também é subálgebra, isso nos mostra que ( f ∨ g), ( f ∧ g) ∈ A( f , g).

Por fim, se A ⊂ C (M; R) é uma subálgebra e f , f1, . . . , fn ∈ A, então A( f ) ⊂ A e A( f1, . . . , fn) ⊂ A.

Logo, | f | ∈ A, f1 ∨ · · · ∨ fn ∈ A, f1 ∧ · · · ∧ fn ∈ A.

Fazemos, agora, uma última definição. Dizemos que S ⊂ C (M; R) separa os pontos de M quando, dados

x ̸= y em M, existe f ∈ S tal que f (x) ̸= f (y).

Lema 4.3.4. Seja A ⊂ C (M; R) uma subálgebra que separa pontos e contém as funções constantes. Dados arbitra-

riamente x ̸= y em M e α, β ∈ R, existe f ∈ A tal que f (x) = α e f (y) = β.

Demonstração: Como x ̸= y, existe g ∈ A tal que g(x) ̸= g(y). Queremos usar essa g para construir a

função f desejada. Como A é álgebra e contém as constantes, podemos operar g para obter uma função

que atinja os valores desejados. De fato, basta solucionar o seguinte sistema linear nas incógnitas s e t:

s · g(x) + t = α

s · g(y) + t = β
.

Como o determinante do sistema é g(x) − g(y) ̸= 0, ele possui solução única. Se (s, t) é esta solução,

tomando f : M −→ R, f = s · g + t obtemos uma função que está em A e satisfaz as condições desejadas.

Logo a seguir, apresentaremos uma demonstração do Teorema de Stone-Weierstrass, que pode ser en-

contrada no capítulo 8 do livro [3]. Dada uma função contínua f : M −→ R, queremos encontrar uma

função no fecho da subálgebra A que aproxima ela. A ideia é usar o Lema 4.3.4 para encontrar funções

em A que tem o mesmo valor que f em determinados pontos. Devido à continuidade, essas funções apro-

ximam f ao redor desses pontos de coincidência. Construímos uma cobertura aberta do domínio usando

esse fato, e usamos a compacidade de M para encontrar uma subcobertura finita. Depois, usamos essa

subcobertura para montar uma função nova, feita dos pedaços das funções que estão localmente próximas

de f . Como a subcobertura é finita, essa função será feita de uma quantidade finita de pedaços. Pelo Lema

4.3.3, isso garante que a função nova está no fecho de A.

Teorema 4.3.5 (Teorema de Stone-Weierstrass em Espaços Métricos). Sejam M um espaço métrico compacto

e A ⊂ C (M; R) uma subálgebra de funções contínuas que contém as constantes e separa os pontos. Então A é
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denso em C (M; R). Isto é, toda função contínua f : M −→ R pode ser uniformemente aproximada por funções

pertencentes a A.

Demonstração: É suficiente mostrar que para toda f ∈ C (M; R) e todo ε > 0 existe g ∈ A tal que | f (x)−

g(x)| < ε, qualquer que seja x ∈ M. Dados arbitrariamente x, y ∈ M, existe gxy ∈ A tal que gxy(x) = f (x)

e gxy(y) = f (y). Isto nos é garantido pelo Lema 4.3.4 quando x ̸= y e é trivial se x = y.

Fixando x ∈ M, devido à continuidade, cada ponto y ∈ M possui uma vizinhança aberta Vxy tal que

z ∈ Vxy ⇒ gxy(z) > f (z) − ε. Assim,
⋃

y∈M Vxy é cobertura aberta de M. Devido à compacidade de M,

existem y1, . . . , yn ∈ M tais que M = Vxy1 ∪ · · · ∪ Vxyn . Seja gx = gxy1 ∨ · · · ∨ gxyn . O Lema 4.3.3 nos diz que

gx ∈ A. Fora isso, como gxy(x) = f (x) para todo y, então gx(x) = f (x). Por fim, qualquer que seja z ∈ M,

existe i ∈ {1, 2, . . . , n} tal que z ∈ Vxyi , o que implica que gxyi(z) > f (z)− ε. Como gx é definida tomando

o máximo de todas as gxyk em cada ponto, isso nos garante que gx(z) > f (z)− ε para todo z ∈ M.

Por continuidade, cada ponto x ∈ M possui uma vizinhança Ux tal que z ∈ Ux ⇒ gx(z) < f (z) + ε.

Sendo M compacto, existem x1, . . . , xm ∈ M tais que M = Ux1 ∪ · · · ∪ Uxm . Seja g = gx1 ∧ · · · ∧ gxm .

O Lema 4.3.3 garante que g ∈ A. Já sabemos que, para todo z ∈ M, g(z) > f (z) − ε. Além disso,

existe j ∈ {1, . . . , m} tal que z ∈ Uxj . Daí, gxj(z) < f (z) + ε. Como g é definida em cada ponto como o

mínimo das gxk , isso nos garante que g(z) < f (z) + ε. Combinando os dois resultados, para todo z ∈ M,

| f (z)− g(z)| < ε.

Isto conclui a demonstração.

Existe ainda uma forma complexa do Teorema de Stone Weierstrass, que nos dá uma condição suficiente

para uma subálgebra ser densa em C (M; C), para M compacto. Dessa vez, no entanto, além de exigir que a

subálgebra separe os pontos de M e contenha as funções constantes, também precisamos impor que ela seja

autoadjunta, isto é, que ela contenha a função conjugada de cada uma das suas funções. A demonstração

desse resultado pode ser feita com facilidade usando a forma real do Teorema de Stone-Weierstrass.
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Capítulo 5

Em Espaços Topológicos

Veremos, agora, que tanto o Teorema de Stone-Weierstrass como o Teorema de Ascoli-Arzelà podem

ser generealizados para espaços topológicos Hausdorff compactos. Começamos com o Teorema de Stone-

Weierstrass, por ser o mais simples neste caso.

5.1 Teorema de Stone-Weierstass em Espaços Topológicos

Apresentaremos aqui uma versão modificada da demonstração dada em [4]. O texto citado utiliza uma

técnica similar a partições da unidade, mas as alterações feitas aqui tornam possível o uso do conceito ver-

dadeiro. Começamos definindo os conceitos que serão necessários para um espaço topológico X qualquer.

Dizemos que uma família (Cλ)λ∈L de subconjuntos de X é localmente finita quando todo ponto x ∈ X

possui uma vizinhança que intersecta apenas um número finito dos conjuntos Cλ.

Dada uma função f : X −→ R, definimos o seu suporte:

supp( f ) = { x ∈ X | f (x) ̸= 0 }.

Observe que se x /∈ supp( f ), então existe uma vizinhança de x onde f é identicamente nula.

Seja (φλ)λ∈L uma família de funções φλ : X −→ R tais que a família (supp(φλ))λ∈L é localmente finita.

Então, para todo x ∈ X, temos apenas uma quantidade finita de funções φλ para as quais φλ(x) ̸= 0.

Então, podemos definir a função φ : X −→ R, pondo φ = ∑λ∈L φλ. Observe que se para todo λ ∈ L, φλ

for contínua, então φ será contínua. De fato, para cada ponto x ∈ X, existe uma vizinhança de x na qual φ

é igual a uma soma finita de funções contínuas em x. Portanto, φ será contínua em x.

Uma partição da unidade em X é uma família (φλ)λ∈L de funções contínuas φ : X −→ R tais que:

1. Para todo λ ∈ L, 0 ≤ φλ.

2. A família (supp(φλ))λ∈L é localmente finita em X.

3. ∑λ∈L φλ = 1.
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Dizemos que uma partição da unidade (φλ)λ∈L é estritamente subordinada à cobertura (Cλ)λ∈L se, para

cada λ ∈ L, supp(φλ) ⊂ Cλ.

Agora, seja X um espaço topológico Hausdorff compacto. Começamos observando que, se A ⊂ C (X, R)

é uma subálgebra que contém as funções constantes, então, para toda f ∈ A e todo polinômio p, temos que

p ◦ f ∈ A. De fato, tal composição será uma função da forma

an f n + an−1 f n−1 + · · ·+ a1 f + a0,

para algum n ∈ N e an, · · · , a0 ∈ R. Sabemos que esta função está em A devido às propriedades de

álgebra. Assim, encontrando uma função na álgebra com determinado comportamento e compondo-a

com um polinômio apropriado, podemos provar a existência de uma função de interesse na álgebra. Esta

ideia revela uma nova aplicação do Teorema de Aproximação de Weierstrass: Podemos usá-lo para mostrar

que uma função específica está no fecho da álgebra.

Lema 5.1.1. 1. Dados a, b ∈ R com 0 < a < b < 1, existe uma sequência de polinômios pn : [0, 1] −→ R que

aproxima uniformemente a função r : [0, 1] −→ R dada por

r(x) =


1 se 0 ≤ x ≤ a

x−a
a−b + 1 se a < x < b

0 se b ≤ x ≤ 1

.

2. Dado M ∈ R, com M ≥ 1, existe uma sequência de polinômios qn : [1, M] −→ R que aproxima uniforme-

mente a função 1
x no intervalo [1, M].

Demonstração: De fato, tanto a função r como a função 1
x são contínuas e definidas em um intervalo

compacto. O lema segue do Teorema 3.2.4.

Lema 5.1.2. Sejam X um espaço topológico Hausdorff compacto e A ⊂ C (X, R) uma subálgebra que contém as

constantes e que separa pontos. Seja x ∈ X e U vizinhança aberta de x. Daí existe V ⊂ U vizinhança aberta de x e

φ ∈ A tal que:

1. 0 ≤ φ ≤ 1;

2. supp(φ) ⊂ U;

3. φ(s) = 1, ∀s ∈ V.

Demonstração: Note que a parte 1 do Lema 5.1.1 simplifica bastante nosso trabalho. De fato, para quais-

quer a, b ∈ R com 0 < a < b < 0, a função r citada nela tem o seguinte gráfico:
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Então, basta encontrar uma função em A que “mantenha alguma distância” entre os pontos fora de U e

0. Isto é, se conseguirmos encontrar uma constante c > 0 e uma função ψ ∈ A, 0 ≤ ψ ≤ 1, tal que

x /∈ U =⇒ ψ(x) > c > 0, podemos escolher 0 < a < b < c < 1, e tomar r como no enunciado da parte 1

do Lema 5.1.1. A composição r ◦ ψ, portanto, se anulará em todos os pontos fora de U e estará em A.

O primeiro passo para encontrarmos a função ψ ∈ A desejada é encontrar, para um dado t ̸= x, uma

função que se anule em x e valha 1 em t. Usamos o fato de que A separa pontos.

Seja t ∈ X, t ̸= x. Sabemos que existe uma função ft ∈ A tal que ft(t) ̸= ft(x), então ft(t)− ft(x) ̸= 0.

Definimos então gt : X −→ R pondo gt(s) = ft(s)− ft(x)
ft(t)− ft(x) . Observe que gt(x) = 0 e gt(t) = 1. Além disso,

gt ∈ A, pois ela pode ser obtida multiplicando ft por um escalar e depois somando o resultado a uma

constante. Agora, definimos ht pondo ht(s) = g2
t (s). Note que ht ∈ A pois é produto de funções em A.

Temos então que ht(x) = 0, ht(t) = 1 e ht ≥ 0.

Como, para todo t ̸= x, a função ht é contínua e vale 1 em t, existe uma vizinhança de t que é “mantida

a alguma distância” de zero por ht. Nossa abordagem agora é usar várias dessas vizinhanças para cobrir

X \ U. Combinando as funções ht correspondentes, obteremos uma função que faz isso para todos os

pontos fora de U.

Seja K = X \ U. Como K é fechado e X é compacto, K é compacto. Para cada t ∈ X com t ̸= x, defina

Vt = { s ∈ X | ht(s) > 1/2 }.

Note que Vt é vizinhança aberta de t, uma vez que ht é contínua e t ∈ Vt. Então
⋃

t∈K Vt é uma cobertura

aberta de K. Pela compacidade de K, existem t1, · · · , tn ∈ K tais que K ⊂ Vt1 ∪ · · · ∪ Vtn . Tome h = ∑n
j=1 htj .

h, sendo somatória finita de funções em A, está em A. Além disso, se t ∈ K, existe k ∈ {1, · · · , n} tal que

t ∈ Vtk . Daí:

h(t) =
n

∑
j=1

htj ≥ htk(t) >
1
2

.

Por fim, como h é contínua definida em um compacto, sua norma em X está bem definida. Tomando
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ψ(s) = h(s)
∥h∥ , temos que 0 ≤ ψ ≤ 1 e, se t ∈ K, ψ(t) > 1

2∥h∥ .

Seja c = 1
2∥h∥ . Tome a, b ∈ R tais que 0 < a < b < c < 1 e aplique a parte 1 do Lema 5.1.1 para obter

uma sequência de polinômios pn : [0, 1] −→ R que aproxima uniformemente a função r que corresponde

aos a e b escolhidos. Para cada n, pn ◦ ψ ∈ A. Além disso, a sequência (pn ◦ ψ) converge uniformemente

para r ◦ ψ. Então r ◦ ψ ∈ A. Seja φ = r ◦ ψ.

Mostremos que φ é a função desejada. De fato, 0 ≤ φ ≤ 1. Também vimos que s ∈ K =⇒ ψ(s) >

c =⇒ φ(s) = 0. Mas então, tomando W = { s ∈ X | φ(s) ̸= 0 } e Z = { s ∈ X | ψ(s) ≤ c },

temos W ⊂ Z ⊂ U. Como Z é fechado, supp(φ) = W ⊂ Z ⊂ U. Então supp(φ) ⊂ U. Por fim,

tome V = { s ∈ X | ψ(s) < a }. Daí V é vizinhança aberta de x e, se s ∈ V, φ(s) = 1. Isso conclui a

demonstração.

Lema 5.1.3. Sejam X um espaço topológico Hausdorff compacto e A ⊂ C (X, R) subálgebra que contém as constan-

tes e separa pontos. Para cada x ∈ X, seja Ux vizinhança aberta de x. Daí, existem x1, · · · , xn ∈ X e g1, · · · , gn ∈ A

tais que (gi)
n
i=1 é partição da unidade estritamente subordinada a (Uxi)

n
i=1.

Demonstração: Pelo Lema 5.1.2, para cada Ux obtemos Vx uma vizinhança aberta de x e uma função φx.

Veja que
⋃

x∈X Vx é cobertura aberta de X. Pela compacidade de X, é possível obter x1, · · · , xn ∈ X tais que

X ⊂ Vx1 ∪ · · · ∪ Vxn . Definimos então ψ = ∑n
j=1 φxj . Se x ∈ X, existe k ∈ {1, · · · , n} tal que x ∈ Vxk . Mas

então ψ(x) ≥ φxk(x) = 1 > 0. Isto é, a função ψ nunca se anula em X. Por fim, tome gj =
φxj
ψ , j = 1, · · · , n.

Seja j ∈ {1, · · · , n}. Primeiro, note que como ψ é soma de funções em A, e como fecho de subálgebra

é subálgebra, então ψ ∈ A. Agora, ψ é função contínua definida em um compacto. Pela Proposição 2.0.3,

ψ atinge máximo em X. Denotamos ele por M. Pela parte 2 do Lema 5.1.1, obtemos uma sequência de

polinômios qn : [1, M] −→ R que aproxima 1
x uniformemente no intervalo [1, M]. Então, a sequência

qn ◦ ψ, que está em A, aproxima uniformemente 1
ψ em X. Como A é fechado, isto mostra que 1

ψ ∈ A.

Portanto, gj é produto de funções em A, que é álgebra. Assim, está em A.

Para cada j, φj ≥ 0. Daí, gj ≥ 0. Também, a família (supp(gi))
n
i=1 é finita, portanto localmente finita em

X. Por fim, se x ∈ X, temos

n

∑
j=1

gj(x) =
n

∑
j=1

φxj(x)
ψ(x)

=
1

ψ(x)

n

∑
j=1

φxj(x) =
ψ(x)
ψ(x)

= 1.

Então, a família (gi)
n
i=1 é partição da unidade em X. Além disso, para cada j, temos que supp(gj) ⊂ Uxj ,

pois supp(φxj) ⊂ Uxj . Então ela é estritamente subordinada a (Uxi)
n
i=1.

Agora, estamos prontos para provar o teorema. Note que para provar que A é denso em C (X, R), é

suficiente mostrar que para todo ε > 0 e toda f ∈ C (X, R), existe g ∈ A tal que ∥ f − g∥ < ε. Nossa

abordagem será a seguinte: para cada x ∈ X, definimos Vx = {y ∈ X : | f (y) − f (x)| < ε
2}. Observe

que cada Vx é uma vizinhança aberta de x em que a função f é aproximada pela função constante f (x).

Utilizando a compacidade de X, obteremos uma cobertura X ⊂ Vx1 ∪ · · · ∪ Vxn . Note que as constantes
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f (x1), · · · , f (xn) são funções em A que aproximam f em pequenas regiões, e essas regiões juntas cobrem

X. O único problema é que se construíssemos uma função que aproximasse f em todo X “colando” as

constantes, ela não seria contínua e, mesmo se fosse, poderia não pertencer a A. A solução é fazer uma

espécie de “colagem suave” usando a partição da unidade do Lema 5.1.3.

Para que a ideia fique mais clara, vejamos o que aconteceria se n = 2. Neste caso, X ⊂ Vx1 ∪ Vx2

e temos g1, g2 ∈ A como no Lema 5.1.3. Definimos então g = f (x1) · g1 + f (x2) · g2. Seja x ∈ X. Se

x ∈ Vx1 \ Vx2 , g(x) = f (x1), pois x /∈ supp(g2). Da mesma forma, se x ∈ Vx2 \ Vx1 , g(x) = f (x2). Em

ambos estes casos, g aproxima f pela própria definição de Vx1 e Vx2 . Por outro lado, se x ∈ Vx1 ∩ Vx2 ,

g(x) = f (x1) · g1(x) + f (x2) · g2(x). Como g1(x), g2(x) ≥ 0 e g1(x) + g2(x) = 1, neste último caso g(x) é

uma média ponderada de f (x1) e f (x2). Portanto, o valor g(x) está entre f (x1) e f (x2). Como x ∈ Vx1 ∩Vx2 ,

as funções f (x1) e f (x2) ambas aproximam f , portanto g também aproxima f neste conjunto. Então, a

função g aproxima f em todo X, mas o mais interessante é que g é contínua e pertence a A. Passemos a

considerações mais rigorosas.

Teorema 5.1.4 (Teorema de Stone-Weierstrass em Espaços Topológicos). Seja X espaço topológico Hausdorff

compacto. Se A ⊂ C (X, R) é subálgebra que contém as constantes e separa pontos de X, então A é densa em

C (X, R).

Demonstração: Seja f ∈ C (X, R) e ε > 0. Para cada x ∈ X, definimos:

Vx = {y ∈ X : | f (y)− f (x)| < ε

2
}.

Como f é contínua, Vx é vizinhança aberta de x. Pelo Lema 5.1.3, existem x1, · · · , xn ∈ X e g1, · · · , gn ∈ A

tais que (gi)
n
i=1 é partição da unidade estritamente subordinada a (Vxi)

n
i=1. Definimos g = f (x1) · g1 + · · ·+

f (xn) · gn ∈ A.

Daí, se x ∈ X,

| f (x)− g(x)| = | f (x) · 1 − g(x)| = | f (x) ·
n

∑
i=1

gi(x)−
n

∑
i=1

f (xi) · gi(x)| ≤
n

∑
i=1

gi(x)| f (x)− f (xi)|.

Agora, seja J = { j ∈ {1, · · · , n} | x ∈ Vxj }. Mas, se x /∈ Vxk , gk(x) = 0. Ao mesmo tempo, se x ∈ Vxk ,

| f (x)− f (xk)| < ε/2. Daí,

| f (x)− g(x)| ≤
n

∑
i=1

gi(x)| f (x)− f (xi)| = ∑
i∈J

gi(x)| f (x)− f (xi)| ≤ ∑
i∈J

gi(x)
ε

2
=

ε

2
.

Então, ∥ f − g∥ ≤ ε/2 < ε. Isso conclui a demonstração do teorema.
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5.2 Teorema de Ascoli-Arzelà em Espaços Topológicos

Para provar o Teorema de Ascoli-Arzelà em espaços topológicos, usaremos uma abordagem bastante

diferente da que foi vista em espaços métricos. Ela pode ser encontrada em [1]. Começamos com algumas

definições.

Seja (D,≤) um conjunto parcialmente ordenado. D é dito conjunto dirigido se, para quaisquer a, b ∈ D,

existe c ∈ D tal que a ≤ c e b ≤ c. Se D é conjunto dirigido e X é um espaço topológico, uma função

f : D −→ X é dita uma rede em X. Dizemos que a rede converge para o ponto x ∈ X se, para cada

vizinhança V de x, existe d0 ∈ D tal que d ≥ d0 =⇒ f (d) ∈ V.

Na demonstração do lema seguinte, utilizaremos a seguinte notação: se r ∈ R, r > 0 e A é um espaço

vetorial, então

r · A = { r · a | a ∈ A }.

Lema 5.2.1. Sejam X um espaço de Banach e {Uα}α∈D uma rede de operadores lineares limitados Uα : X −→ X.

Se limα Uα(x) = x uniformemente em um conjunto limitado K e se Uα(B[0; 1]) é relativamente compacto para todo

α ∈ D, então K é relativamente compacto.

Demonstração: Como X é espaço de Banach, K é completo. Então, pela Proposição 2.0.5, para mostrar que

K é relativamente compacto, basta mostrar que K é totalmente limitado. Por sua vez, isso pode ser feito

mostrando que K é totalmente limitado.

Seja ε > 0 dado. Como limα Uα(x) = x uniformemente em K, existe a ∈ D tal que,

∥Ua(k)− k∥ <
ε

3
∀k ∈ K

Agora, sabemos que K é limitado. Então, existe r > 0 tal que K ⊂ B[0; r]. Mas, pela linearidade de Ua,

Ua(B[0; r]) = Ua(r · B[0; 1]) = r · Ua(B[0; 1]).

Como Ua(B[0; 1]) é relativamente compacto, Ua(B[0; r]) também é. Então Ua(K) é relativamente compacto,

pois está contido em Ua(B[0; r]).

Pela Proposição 2.0.5, Ua(K) é totalmente limitado. Então existem k1, · · · , kn ∈ K tais que, para todo

k ∈ K, existe j ∈ {1, · · · , n} tal que

∥Ua(k)− Ua(k j)∥ <
ε

3
.

Mas então, para um dado k ∈ K, existe j ∈ {1, · · · , n} tal que

∥k − k j∥ ≤ ∥k − Ua(k)∥+ ∥Ua(k)− Ua(k j)∥+ ∥Ua(k j)− k j∥ <
ε

3
+

ε

3
+

ε

3
= ε.

Então, K é totalmente limitado, o que conclui a demonstração.
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Para um dado espaço topológico Hausdorff compacto S, definimos B(S) como o conjunto de todas as

funções limitadas f : S −→ R. Por sua vez, definimos B(S;P(S)) como o fecho em B(S) do conjunto de to-

das as combinações lineares de funções características de subconjuntos de S. Usaremos C (S) para denotar

o conjunto das funções contínuas de S em R. Sabemos que B(S) é espaço de Banach. Consequentemente,

B(S;P(S)) também é. Dado E ⊂ S, detoratemos por χE a função característica de E.

Pode parecer curiosa a ideia de se estudar o espaço B(S;P(S)), mas note que ele é bem extenso. De

fato, ele contém C (S):

Proposição 5.2.2. Se S é espaço topológico Hausdorff compacto, então C (S) ⊂ B(S;P(S)).

Demonstração: Seja f ∈ C (S) e ε > 0. Queremos obter uma combinação linear de funções características

que esteja a distância ε de f . Usamos uma ideia similar à que foi usada na demonstração do Teorema de

Stone-Weierstrass desta sessão. Para cada s ∈ S, defina

Vs = {x ∈ S : | f (s)− f (x)| < ε

2
}.

Como f é contínua, Vs é vizinhança aberta de s. Da cobertura S ⊂ ⋃
s∈S Vs, extraímos uma subcobertura

finita S ⊂ Vs1 ∪ · · · ∪ Vsn . Definimos então E1 = Vs1 , E2 = Vs2 \ E1, E3 = Vs3 \ (E1 ∪ E2), · · · , En = Vsn \

(E1 ∪ · · · ∪ En−1). Podemos supor, sem perda de generalidade, que cada Ei é não vazio. Seja então x1 ∈

E1, · · · , xn ∈ En. Note que os conjuntos Ei são disjuntos e que a união deles é S. Agora, definimos g : S −→

R pondo g(x) = ∑n
i=1 f (xi)χEi(x). Então, se x ∈ S, existe j ∈ {1, · · · , n} tal que x ∈ Ej. Daí, g(x) = f (xj).

Então, | f (x)− g(x)| = | f (x)− f (xj)|. Mas x ∈ Ej ⊂ Vsj , então | f (x)− f (xj)| < ε/2. Como isso vale para

todo x ∈ S, temos que ∥ f − g∥ ≤ ε/2 < ε. Como conseguimos obter combinações lineares de funções

características arbitrariamente próximas de f , então f ∈ B(S;P(S)).

Proposição 5.2.3. Seja K ⊂ B(S;P(S)) um conjunto limitado. Suponha que, para cada ε > 0, existem subconjun-

tos disjuntos E1, · · · , En ⊂ S cuja união é S e pontos s1 ∈ E1, · · · , sn ∈ En, tais que, para cada i ∈ {1, · · · , n},

sup
s∈Ei

| f (si)− f (s)| < ε, ∀ f ∈ K.

Então, K é relativamente compacto.

Demonstração: Nossa estratégia será usar o Lema 5.2.1. Começamos definindo um operador linear. Seja

A o conjunto de todos os conjuntos da forma a = {E1, · · · , En ; s1, · · · , sn}, em que E1, · · · , En ⊂ S são

subconjuntos disjuntos de união S e si ∈ Ei, i = 1, · · · , n. Munimos A da ordem ≤, na qual dizemos

que a = {E1, · · · , En ; s1, · · · , sn} ≤ a′ = {E′
1, · · · , E′

m ; s′1, · · · , s′m} se cada conjunto Ei em a é união de

conjuntos E′ em a′. Isto é, os conjuntos de a′ são “obtidos” particionando conjuntos em a. Com esta ordem,

A é conjunto dirigido.
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Agora, para cada a ∈ A, definimos o operador Ua : B(S;P(S)) −→ B(S;P(S)) dado por Ua( f ) = fa,

em que

fa =
n

∑
i=1

f (si)χEi .

É fácil verificar que Ua é linear.

Note que o que o operador faz é “aproximar” f ∈ B(S;P(S)), particionando S em n conjuntos, to-

mando o valor de f em um ponto de cada um deles e aproximando f neste pedaço todo como uma função

constante com esse valor. Note que se a < a′, esperamos que fa′ seja uma aproximação melhor de f do

que fa, pois estaremos pegando uma partição mais fina de S. Ilustramos esta intuição através do gráfico

seguinte, em que temos uma função f em preto, fa em vermelho e fa′ em azul, onde a < a′.
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Para aplicar o Lema 5.2.1, precisamos mostrar que cada Ua é limitado, que lima Ua( f ) = f uniformemente

em K e que Ua(B[0; 1]) é relativamente compacto para todo a ∈ A.

Primeiro, seja f ∈ B(S;P(S)) e a = {E1, · · · , En ; s1, · · · , sn} ∈ A. Para x ∈ S, existe j ∈ {1, · · · , n}

tal que x ∈ Ej. Daí, temos que fa(x) = f (sj). Mas então, mins∈S f (s) ≤ fa(x) ≤ maxs∈S f (s). Então

∥Ua( f )∥ ≤ ∥ f ∥, para toda f ∈ B(S;P(S)). Em outras palavras, ∥Ua∥ ≤ 1. Isso prova que Ua é operador

limitado para todo a ∈ A.

Agora, usaremos a hipótese para mostrar a convergência uniforme. De fato, dado ε > 0, existe a =

{E1, · · · , En ; s1, · · · , sn} ∈ A tal que, para cada i ∈ {1, · · · , n},

sup
s∈Ei

| f (si)− f (s)| < ε

4
, ∀ f ∈ K.

Suponha a′ = {E′
1, · · · , E′

m ; s′1, · · · , s′m} ≥ a. Tome x ∈ S. Daí, existem j′ ∈ {1, · · · , m} e j ∈ {1, · · · , n} tais

que x ∈ E′
j′ ⊂ Ej. Então,

|(Ua′( f ))(x)− f (x)| = | f (s′j′)− f (x)| ≤ | f (s′j′)− f (sj)|+ | f (sj)− f (x)| < ε

4
+

ε

4
=

ε

2
,

uma vez que s′j′ , sj, x ∈ Ej. Assim, ∥Ua′( f )− f ∥ ≤ ε/2 < ε.
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Resta apenas mostrar que todo Ua(B[0; 1]) é relativamente compacto. Tome a = {E1, · · · , En ; s1, · · · , sn} ∈

A. Seja Y o subespaço de B(S;P(S)) gerado por {χE1 , · · · , χEn}. Temos que Ua(B[0; 1]) ⊂ Y. Além disso,

como ∥Ua∥ ≤ 1, temos que Ua(B[0; 1]) ⊂ BY[0; 1], onde BY[0; 1] denota a bola em Y. Mas, pela Propo-

sição 2.0.9, como Y tem dimensão finita, BY[0; 1] é compacta. Como subconjunto fechado de compacto é

compacto, Ua(B[0; 1]) é relativamente compacto.

Como todas as hipóteses estão satisfeitas, podemos aplicar o Lema 5.2.1, concluindo assim que K é

relativamente compacto.

Agora, definiremos o conceito de equicontinuidade para espaços topológicos: Um subconjunto K ⊂

C (S) é dito equicontínuo em s ∈ S se, para cada ε > 0, existe uma vizinhança V de s tal que

sup
f∈K

sup
t∈V

| f (s)− f (t)| < ε.

Note que esta é uma extensão natural do conceito de equicontinuidade em espaços métricos. De fato, esta-

mos simplesmente dizendo que qualquer que seja t ∈ V e qualquer que seja f ∈ K, | f (s)− f (t)| < ε. Isto

é, para todo ε existe uma vizinhança V que “funciona” para todas as funções de K. K é dito simplesmente

equicontínuo se for equicontínuo em todo s ∈ S.

Teorema 5.2.4 (Teorema de Ascoli-Arzelà em Espaços Topológicos). Seja S espaço topológico Hausdorff com-

pacto. Então, K ⊂ C (S) é relativamente compacto se, e somente se, é limitado e equicontínuo.

Demonstração: Comece supondo K limitado e equicontínuo, e seja ε > 0 dado. Pela definição de equicon-

tínuidade, para cada x ∈ S, conseguimos obter uma vizinhança Vx tal que

sup
f∈K

sup
t∈Vx

| f (x)− f (t)| < ε

2
.

Usando a compacidade de S, obtemos uma cobertura finita S ⊂ Vx1 ∪ · · · ∪ Vxn . Definimos então E1 =

Vx1 , E2 = Vx2 \ E1, · · · , En = Vxn \ (E1 ∪ · · · ∪ En−1). Dessa forma, obtemos n conjuntos disjuntos, de união

S. Podemos supor, sem perda de generalidade, que todo Ei é não vazio. Tomamos, então, s1 ∈ E1, · · · , sn ∈

En. Para todo i ∈ {1, · · · , n} e para t ∈ Ei, temos

| f (si)− f (t)| ≤ | f (si)− f (xi)|+ | f (xi)− f (t)|.

Mas, como si, xi, t ∈ Ei,

sup
f∈K

sup
t∈Ei

| f (si)− f (t)| ≤ | f (si)− f (xi)|+ sup
f∈K

sup
t∈Ei

| f (xi)− f (t)| < ε

2
+

ε

2
= ε.

Então,

sup
t∈Ei

| f (si)− f (t)| < ε, ∀ f ∈ K.
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Como K ⊂ C (S) ⊂ B(S;P(S)), pela Proposição 5.2.3, K é relativamente compacto.

Para a recíproca, sabemos pela Proposição 2.0.5 que K é totalmente limitado, e portanto limitado. Mais

do que isso, dado ε > 0, existem f1, · · · , fn ∈ K tais que K ⊂ B( f1, ε/3) ∪ · · · ∪ B( fn, ε/3). Dado s ∈ S,

podemos usar a continuidade das funções para obter V1, · · · , Vn vizinhanças de s tais que, para cada i ∈

{1, · · · , n},

| fi(s)− fi(t)| <
ε

3
∀t ∈ Vi.

Tomando então V = V1 ∩ · · · ∩ Vn, obtemos uma única vizinhança de s que satisfaz a condição acima para

cada cada fi. Dada f ∈ K, existe j ∈ {1, · · · , n} tal que f ∈ B( f j, ε/3). Então para todo t ∈ V, vale

| f (s)− f (t)| ≤ | f (s)− f j(s)|+ | f j(s)− f j(t)|+ | f j(t)− f (t)| < ε

3
+

ε

3
+

ε

3
= ε.

Portanto,

sup
f∈K

sup
t∈V

| f (s)− f (t)| < ε.

O que mostra que K é equicontínuo em todo s ∈ S, e portanto é equicontínuo.
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