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RESUMO

CHERTO, C. Dois Teoremas Classicos em Analise Matematica. 2021. 35 p. Monografia (Bacharelado em

Matematica) — Instituto de Matemaética e Estatistica, Universidade de Sao Paulo, Sdo Paulo, 22 Semestre de 2021.

Estudamos o Teorema de Ascoli-Arzela e o Teorema de Stone-Weierstrass em trés ambientes: na reta, em
espagos métricos e em espacos topolégicos. Investigamos as dificuldades que surgem ao tentar generalizar

um resultado.

Palavras-chave: Anélise, Espacos Métricos, Topologia, Teorema de Ascoli-Arzela, Teorema de Stone-Weierstrass.
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ABSTRACT

CHERTO, C. Two Classic Theorems of Mathematical Analisis. 2021. 35 p. Monografia (Bacharelado em

Matematica) — Instituto de Matemaética e Estatistica, Universidade de Sao Paulo, Sdo Paulo, 22 Semestre de 2021.

We study the Ascoli-Arzela Theorem and the Stone-Weierstrass Theorem in three diferent settings: the
real numbers, metric spaces and topological spaces. We investigate the difficulties that appear when trying

to generalize a result.

Keywords: Analysis, Metric Spaces, Topology, Ascoli-Arzela Theorem, Stone-Weierstrass Theorem.
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Capitulo 1

Compacidade e Motivacao

Apesar de ser extremamente importante, a ideia de compacidade pode parecer bastante confusa em
um primeiro momento. Faremos aqui uma discussdo baseada no artigo [5] que visa proporcionar um

entendimento intuitivo desse conceito e motivar os teoremas que estudaremos neste trabalho.

Alguns dos objetos mais basicos que existem na matemadtica sdo conjuntos finitos. Devido a essa ex-
trema simplicidade, quando os munimos de algum tipo de estrutura, eles costumam gozar de propriedades
especialmente boas, que ndo valem em geral. Por sorte, em muitos casos conseguimos encontrar conjuntos
9 e ) . e N

quase finitos”. Isto é, conjuntos que apesar de serem infinitos, se comportam, em relagdo a estrutura,
de forma similar aos conjuntos finitos. Esta ideia de conjuntos “quase finitos” aparece em vérias dreas da

matemadtica, mas na topologia eles recebem o nome de espagos compactos.

O Teorema de Weierstrass no dd4 um exemplo de uma tal propriedade. Fungdes reais de dominio fi-
nito sempre assumem um valor méximo. Isso ndo é valido em geral, mas se o dominio for compacto e a
fungao real for continua, o resultado é verdadeiro. Um outro exemplo é uma das caracterizagdes de es-
pagos métricos compactos. Toda sequéncia em um conjunto finito admite uma subsequéncia constante.
Analogamente, toda sequéncia em um espago métrico compacto admite uma subsequéncia convergente.
Assim, vemos que algumas das propriedades de conjuntos finitos podem ser parcialmente recuperadas em

espagos compactos.

Agora, consideramos duas propriedades de subconjuntos finitos da reta. Suponha que temos uma
fungio real de dominio finito. E facil notar que podemos obter um “polindmio” que coincide com a fungao
dada. Por outro lado, suponha que E é um conjunto de fungdes reais definidas em um conjunto finito D.
Suponha também que, para cada x € D, {f(x) : f € E} é conjunto finito. Entdo E é um conjunto finito. De

fato, existe uma quantidade finita de fung¢des possiveis dentro dessas restri¢oes.

A pergunta natural a se fazer é se conseguimos encontrar versdes analogas desses resultados que va-
lem para dominios compactos. Os teoremas estudados neste trabalho testemunham justamente que, com
algumas adaptagdes, isso é sim possivel.

Por fim, notamos que esse entendimento intuitivo de compacidade pode ser extremamente ttil, ndo



apenas para identificar possiveis teoremas, como também para nos ajudar a prova-los. De fato, a demons-

tracdo do Teorema 3.1.1 pode ser motivada raciocinando em termos do caso finito.



Capitulo 2

Preliminares

Neste trabalho, nosso objetivo foi estudar os teoremas de Ascoli-Arzela e de Stone-Weierstrass em trés
contextos: na reta, em espagos métricos e em espagos topolégicos. Dessa forma, além de nos familiarizar
com as técnicas e ferramentas apropriadas para cada ambiente, também ganhamos um senso sobre como a
matemadtica evolui e como resultados podem ser generalizados.

Ambos os teoremas sdo afirmagdes sobre o espago das fung¢des continuas definidas em um compacto. O
teorema de Ascoli-Arzela nos d4d uma condigdo necessdria e suficiente para que um conjunto de tais fungdes
tenha fecho compacto. Por outro lado, o teorema de Stone-Weierstrass nos diz quando uma subélgebra
desse espago é densa. Tendo em vista a imensa importancia de fun¢des continuas e a grande utilidade de
conjuntos densos e compactos, é facil perceber o valor dos dois teoremas.

Aqui destacaremos algumas defini¢des e proposigdes basicas sobre espagos métricos e topoldgicos que
serdo utilizadas no decorrer do texto. Por serem resultados simples e bem conhecidos, as proposi¢des ndo
serdo demonstradas.

Utilizaremos as notagdes B(a,r) e Bla, r| para denotar as bolas de centro a e raio r aberta e fechada
respectivamente. Além disso, se A é subconjunto de um espago topoldgico, denotamos seu fecho por A.

Seja M um espago métrico. M é dito totalmente limitado quando, para todo € > 0, existe uma quantidade

finita de subconjuntos X, X», ..., X, cada um com didmetro menor do que ¢, taisque M = X; U - - - U X,.

Proposicao 2.0.1. Sejam M e N espacos métricos. Se M é compacto e f : M — N € continua, entdo f é

uniformemente continua.

Proposicdo 2.0.2. Sejam M e K espagos métricos, com K compacto. Seja f : M x K — N uma fungdo continua.
Dados a € Mee > 0, existe 6 > 0 tal que d(x,a) < 6 em M implica d(f(x,t), f(a,t)) < €, qualquer que seja
t e K.

Proposicdo 2.0.3 (Teorema de Weierstrass). Se K é um espago topoldgico compacto e f : K — R é continua,

entdo f atinge mdximo e minimo em K.

Sejam M, N espagos métricos. Utilizaremos ¢ (M; N) para denotar o conjunto de todas as fungdes

continuas f : M — N. Se M é compacto, para quaisquer f,g € € (M;N) a fungdo d(f(x),g(x)) é
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continua, e portanto assume maximo em M. Dai, podemos munir ¢ (M; N) da métrica

d(f,g) = supd(f(x), g(x)).

xeM

Chamamos essa métrica de métrica da convergéncia uniforme. Ao falar do espago ¢'(M; N), a ndo ser que seja
dito o contrdrio, sempre utilizaremos esta métrica.

Similarmente, se M é espago métrico compacto, podemos definir em ¢ (M;R) a norma

I£1 = sup |f(x)]-

xeM
Ela serd a norma usualmente escolhida em %' (M; R).

Proposigdo 2.0.4 (Teorema de Dini). Seja M um espago métrico compacto e (f,) uma sequéncia de fungdes reais
e continuas de M em R. Se (f,) converge simplesmente para uma fungio continua f : M — R e tem-se que

fi(x) < fo(x) < ... para todo x € M, entdo a convergéncia f, — f é uniforme em M.

Proposicao 2.0.5 (Caracterizagdes de Espagos Métricos Compactos). As seguintes afirmagoes a respeito de um

espago métrico M sdo equivalentes:
1. M é compacto;
2. Toda sequéncia de M possui uma subsequéncia convergente;
3. M é completo e totalmente limitado.
Corolario 2.0.6. Todo espago métrico compacto M contém um subconjunto enumerdvel denso.

Dada uma quantidade infinita enumerével de espagos métricos (M, d1), (My,ds), - - -, considere M =
[T21 M;. Se x = (x;) ey = (y;) sdo dois elementos desse conjunto, podemos definir em M a métrica
= 1 di(xi,yi
Ay = g gt
=20 14di(x,y;)
Essa métrica é conhecida como métrica produto. Uma das razdes dela ser extremamente ttil é a seguinte
proposicao:

1,2

Proposigao 2.0.7. Uma sequéncia (x,) = (x},x2,---) em [I>4 M; converge para a = (al, a®

,a=,- -+ ) se, e somente

se, para cada i € N a sequéncia (x},) em M; converge para a'.

Intuitivamente, a proposi¢do acima diz que para uma sequéncia em [ i~ ; M; convergir a a, é necessario e
suficiente que cada “coordenada” da sequéncia convirja a coordenada correspondente de a. Se temos vérias
nogdes de convergéncia, cada uma correspondendo a uma propriedade, conseguimos entdo definir uma
convergéncia em um espago maior que corresponde a todas essas propriedades serem simultaneamente

satisfeitas. Veremos um exemplo concreto na segao 4.2.
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A seguir, mostramos outra propriedade importante da métrica produto:

Proposigao 2.0.8 (Teorema de Cantor-Tychonov). Para cadan € IN, seja M,, um espago métrico. Entio, o espago

métrico M = [T;—1 M, com a métrica produto é compacto se, e somente se, cada fator M,, é compacto.

Proposicdo 2.0.9. Um espago vetorial normado tem dimensdo finita se, e somente se, sua bola fechada unitdria é

compacta.
Proposicdo 2.0.10. As sequintes afirmagoes a respeito de um espago métrico M sdo equivalentes:
1. M é localmente compacto e separdvel;
2. Existem Ky,Ky, - - - compactos em M, com K,, C int K,,+1 para todo n € IN, tais que M = ;1 Ky,.

A maioria das proposi¢des dessa secdo podem ser encontrados em [3].






Capitulo 3

Na Reta

Comegamos estudando o caso mais simples, o da reta. Neste ambiente, temos a seguinte caracterizacdo
extremamente 1til de conjuntos compactos: Um subconjunto de R é compacto se, e somente se, é fechado
e limitado. Além disso, os reais sdo um conjunto completo. Essas e outras caracteristicas do conjunto dos

reais facilitam as demonstragdes e revelam equivaléncias e consequéncias novas dos teoremas.

3.1 O Teorema de Ascoli-Arzela na Reta

Em Anilise, é frequentemente ttil saber se uma dada sequéncia de fun¢des continuas, definidas em
algum intervalo [a,b], tem uma subsequéncia que converge uniformemente para alguma fun¢do. Esta
versdo do teorema de Ascoli-Arzela nos levard a uma condigdo suficiente para garantir que isso acontece.
Mas primeiro precisamos definir o conceito de equicontinuidade.

Sejam M, N espagos métricos e . um conjunto de fungdes f : M — N. . é dito equicontinuo no ponto
a € M quando, para todo € > 0, existe § > 0 tal que d(x,a) < ¢ implique d(f(x), f(a)) < &, seja qual for
f € #.5e # é equicontinuo em todos os pontos de M, .% é dito equicontinuo.

Entdo, a equicontinuidade em a se assemelha muito ao conceito de continuidade em a, com a diferenca
de que 0o mesmo ¢ precisa “funcionar” para todas as fungdes de .%.

Também, para M, N espacos métricos e .# um conjunto de fungdes f : M — N, dizemos que .7 é
uniformemente equicontinuo se, para ¢ > 0, existe § > 0 tal que d(x,y) < ¢ implique d(f(x), f(y)) < &, seja
qual for f € .# e sejam quais forem x,y € M.

Nao é dificil mostrar que, se o dominio das fung¢des for compacto, todo conjunto equicontinuo é uni-
formemente equicontinuo. Por esta razdo, no teorema seguinte estes dois conceitos serdo tratados como
equivalentes.

Por fim, uma sequéncia de fungdes f, : M — N se diz equicontinua quando o conjunto { f1, f2,... } é
equicontinuo.

Devido as simplificagdes que decorrem de estarmos trabalhando com o caso real, o teorema, como apre-

sentaremos a seguir, pode parecer bem diferente das versdes que veremos mais tarde. Quando estas formas
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alternativas do teorema forem visitadas, explicaremos por que ambas as formulacdes sdo equivalentes.

A demonstragdo que serd apresentada aqui pode ser encontrada no capitulo 10 do livro [2].

Teorema 3.1.1 (Teorema de Ascoli-Arzela na Reta). Seja € ([a,b],R) espaco métrico com a métrica da conver-

géncia uniforme e & subconjunto limitado e equicontinuo de € ([a, b], R). Entdo .F é totalmente limitado.

Demonstragao: Seja ¢ > 0. Nosso objetivo é encontrar uma quantidade finita de conjuntos de didmetro
menor do que € que cubram .%. Para isso, dada f € .#, encontraremos uma g a distdncia menor do que
e/3 de f, de modo que f € B(g;¢e/3). Por fim, observaremos que existe uma quantidade finita de fun¢des
g que podem ser obtidas através da técnica utilizada, o que conclui a prova.

Como # é limitado, existe algum M > 0 tal que, qualquer que seja f € 7,
1Al < M.

Como # é equicontinuo e as fung¢des estdo definidas em um conjunto compacto, ele é uniformemente

equicontinuo. Logo existe § > 0 tal que

=yl <d=If(x) — fV)] < 5.
Particionaremos, agora, o intervalo [a, b], tomandoa = xp < x; < --- < x,, = b, de modo que Xjip1— X <9,
paraj=0,1,...,n — 1. Da mesma forma, particionamos o intervalo [—M, M], tomando —M = yp < y1 <
<o+ <Ym =M, demodo que yx1 —yr < e/15,parak=0,1,...,m —1.
Assim, o retangulo [a,b] x [—M, M|, que contém o grafico de todas as fun¢des de .7, fica subdividido
em subretangulos, cada um com base menor do que J e altura menor do que ¢/15.
Agora, tome f € .Z. Paraj = 1,2,...,n, sempre existe i(j) € {1,2,...,m — 1} tal que Yi(j) < f(xj) <
Yi(j)+1- Agora definimos uma fungao ¢ pondo, para cada j, g(x;) = y;(j) e fazendo g ser um segmento de
reta que conecta os pontos (xj;g(x;)) e (xj41;§(xj4+1)) nos intervalos abertos (x;, xj;1). Obtemos assim uma

fung¢do continua g de [, b] em R que satisfaz, para todo j,
£(x) = 8(x)] < 35
78IS 15
Assim, temos que

18(x41) = ()| < [8(xj41) = flxja)| + 1 f (xj41) = FO)] + [f(x7) — & ().

Utilizando a equicontinuidade de .7 e o fato de que o valor de g(x;) foi escolhido justamente para distar

menos do que ¢/15 de f(x;), obtemos que

() — gl < s+ 5= =
S T8I S 5T 5 T 15 T 5

8



Dado x € [a,b] qualquer, existe j € {1,2,...,n — 1} tal que x; < x < xj;1. Como g é monétona em cada
intervalo [x]-, x]-+1],

8(x) —g(x))] < £

Entao,

£(0) = 801 < 1) = FG)] + () = 8(x7) | + [8(x7) — g()| < 7=+ ==+ £ = 5.

Como o intervalo [a, b] é compacto, pela Proposicao 2.0.3,

If =gl = sup |f(x) = g(x)| = max |f(x) —g(x)] < .

x€(a,b] x€[ab]

Isto nos diz que f € B(g,€/3), cujo didmetro é 2¢/3 < ¢. Construindo uma g para cada f, temos que %

estard contido na unido das bolas centradas nas fung¢des g e de raio €/3. Mas, cada g é determinada unica-
mente escolhendo, para cada um dos 7 + 1 pontos x;, um valor y, sendo que existem m + 1 possibilidades.
Existem, portanto, apenas (m + 1)"*! possiveis fun¢des ¢, de modo que .7 pode ser coberto utilizando um

namero finito de conjuntos de didmetro menor que . O

Agora, utilizamos o Teorema 3.1.1 para provar o resultado desejado.

Corolario 3.1.2. Seja (f,) uma sequéncia equicontinua e limitada em ¢ ([a,b];R). Entdo (f,) possui uma sub-

sequéncia que converge uniformemente para alguma fungio de € ([a, b]; R).

Demonstracdo: Pelo Teorema 3.1.1, .% é totalmente limitado. Dai, o seu fecho .# é totalmente limitado.
Como .7 ¢é fechado e estd contido em %([a,b];R), que é completo, .Z é completo. Como é completo e
totalmente limitado, pela Proposicdo 2.0.5, toda sequéncia de .# tem uma subsequéncia que converge. Em

particular, (f,;) tem uma subsequéncia que converge uniformemente em % ([a, b]; R). O

3.2 O Teorema de Aproximacao de Weierstrass

Agora veremos um caso particular do Teorema de Stone-Weierstrass na reta, que historicamente veio
antes dele. Aqui fica evidente uma outra facilidade de se trabalhar com os reais: podemos utilizar a inte-
gragdo como uma ferramenta. Em contextos mais gerais, precisaremos utilizar abordagens completamente
diferentes.

O Teorema de Aproximagao de Weierstrass diz que qualquer funcdo continua definida em um intervalo
[a, b] pode ser aproximada, tdo bem quanto se queira, por um polindmio. Esse teorema pode ser generali-
zado, de forma a obter o Teorema de Stone-Weierstrass, que diz respeito a espagos métricos compactos em

geral. Apresentaremos uma demonstracdo, devida a E. Landau, que utiliza o conceito de convolugao para
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construir os polindmios que aproximam a fung¢do. Esta demonstragdo pode ser encontrada no capitulo 8
do livro [3].

Uma forma intuitiva de enxergar a convolugdo f * ¢ é como uma técnica para regularizar a fungéo f,
construindo uma nova fungao cujo valor, no ponto x, é uma média ponderada feita em volta do ponto x de
f, onde ¢ é a fungdo dos pesos. Imaginemos, agora, que ¢ é uma fungdo continua, positiva e que se anula
fora do intervalo [, ]. Além disso, impomos que [* ¢(t) dt = 1. Bntdo, (f * ¢)(x) é amédia ponderada
dos valores de f no intervalo [x — J, x + 6]. Devido as condi¢des que impusemos em ¢ e a continuidade de
f, a medida que escolhemos valores menores de 6, mais e mais (f * ¢)(x) se aproxima do valor de f(x).
Dessa forma, vemos que é possivel obter aproximagdes arbitrariamente boas da fungdo f através da con-
volugdo, tomando valores de § cada vez menores. Isto ainda nado é suficiente, no entanto, pois precisamos
garantir que as fung¢des que aproximem f sejam polindmios. Para isso, serd preciso abrir mao da condi¢do
imposta de que ¢ se anula fora do intervalo [—J, §], mas fazendo com que esse fato seja aproximadamente
verdadeiro, conseguiremos obter convolugdes que aproximem f e resultem em polindmios, como veremos
a seguir.

Para cada n € IN, tomamos ¢,, = fjll(l — t2)" dt. Definimos, entdo, ¢, : R — R pondo

(1/cy)(1—2)" set e [-1,1]

(Pn(t) = .
0 set ¢ [—1,1]
2 .
y —_— (Pl
—
— @3
1.5 T q)lo
/N
0.5 ¢
‘ ‘ X
-1 —0.5 0.5 1

Provaremos agora trés lemas sobre a funcao ¢. O primeiro nos garante que, para n suficientemente grande,
¢n(x) serd aproximadamente zero nas redondezas do ponto x = 0. E isso que vai garantir que a convolugio

de f com ¢ aproxime f.
Lema 3.2.1. Se 0 < 6 < 1, entdo limy,_,e ¢, (t) = 0 uniformemente para |t| > 6.

Demonstrag¢do: Derivando ¢, (t) obtemos:




Como (—2n/cy) <0e (1 —#)""1 >0,se —1 < t < 0, a derivada é positiva. Se 1 > t > 0, ela é negativa.
Assim a fungdo é crescente em [-1,0] e decrescente em [0,1]. Portanto, ao provar que lim,_,c ¢,(—J) =0e

limy 0 ¢ (8) = 0, fica provado o lema. Como a fungéo é par, provar um desses limites é suficiente.

2
n+1

cn—Z/ dt—2/ (1— 1) (1+1)" dt>2/ (1— )" dt =

#a(0) = (/)1 =) < 0 (1= &)

Como 0 < 1— 6% < 1, segue que lim, (1 — 2)" - (n +1)/2 = 0.
O

O proximo lema nos garante que, dada uma fungdo f, podemos estendé-la para R de modo que sua
convolugdo serd restricdo de um polindmio. Quando formos provar o teorema, veremos que € suficiente

que este lema e o proximo sejam demonstrados para o caso em que [4,b] = [0,1] e que f(0) = f(1) = 0.

Lema 3.2.2. Seja f : [0,1] — R continua, com f(0) = f(1) = 0. Considere f definida em todo R, pondo
f(x) =0sex ¢ [0,1]. Paran € IN, seja py, : [0,1] — R com

+o00

poe) = (Frg)0) = [ flsguar = [ flxt Dgnat.

Entdo py, € restrigdo de um polinomio.

Demonstra¢do: Fazendo a mudanga de varidvel y = x + t obtemos

x+1
= /H fW)en(y —x)dy.

Mas, como x € [0,1], temos que [0,1] C [x —1,x 4 1], qualquer que seja x. Como f é nula fora de [0, 1],

obtemos que
x+1 1
/x_1 fW)enly —x)dy = /0 f@)enly — x) dy.
Como x,y € [0,1], x —y € [—1,1]. Substituindo em ¢, obtemos

(Pn(y—x)zl[l— —x)° Zéz

onde cada ¢; é um coeficiente que depende de y. Como a integral é na varidvel y, as poténcias de x “saem”

de dentro dela. Assim, colocando a; = fo y) dy, obtemos

2n
=Y 4«
i=0
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O lema seguinte garante que os polindmios obtidos de fato aproximam a funcado f uniformemente.
Lema 3.2.3. Nas condigdes do lema anterior, tem-se limy,_ oo pn = f uniformemente no intervalo [0, 1].

Demonstragio: Como | _+11 @n(t) dt = 1, temos que

+1
f) = [ f@gn(t)d

Logo, para todo n € IN e todo x € [0, 1], vale

+1
pa) = £(x) = [ [fG+ D) = F@lga(t)at

Entéo,

+1
f(x) = pu(x)] < [1 [fCx+8) = fF(x)|a(t) dt

Para simplificar a notagdo, definimos I(x) = [ FUf(x 4 1) = F(x)|@n(t) dt
Seja ¢ > 0. Para demonstrar o lema, ¢ suficiente encontrar ny € N tal que n > ng = I(x) < ¢ para
todo x € [0,1]. Para fazer isso, fixando um dado x, separaremos I(x) em trés pedagos. Os pedagos das

extremidades serdo pequenos pois ¢, (t) se aproxima de zero longe do centro. O pedago do meio é pequeno

pois a continuidade uniforme de f garante que |f(x +t) — f(x)| é pequeno para valores de t préximos de
zero. Passemos a considerac¢des mais rigorosas.

Pela Proposicao 2.0.1, f é uniformemente continua. Dai, dado qualquer ¢ > 0, existe § > 0 tal que
|t| < 6= |f(x+1t)— f(x)| < e/3, qualquer que seja x € [0,1]. Como |f| é continua, pela Proposi¢do 2.0.3
ela assume maximo. Tomamos M = max,c[1) |f(x)|- Pelo Lema 3.2.1, existe ng € IN tal que n > ny,

[t| > 6 = |@u(t)| < e/(6M). Logo, para todo n > ng e todo x € [0,1] temos I(x) < A+ B+ C, onde

-0 e
A= [ CUfGe+n = F@lga(t)dt <2M- = %,

B/ Flx+t) ()|¢n(t)dt<;/igon(t)dt§§,

1 €
C= [Iflr+H—flgu(t)at <2M- o = 2.

Logo, paran > ngex € [0,1], | f(x) — pn(x)| < . O
Finalmente, provaremos o teorema.

Teorema 3.2.4 (Teorema de Aproximacdo de Weierstrass). Dada uma fungdo continua f : [a,b] — R, existe

uma sequéncia de polindmios py, tais que limy,_,co p, = f uniformemente em |a, b].

Demonstragdo: Utilizando os Lemas 3.2.2 e 3.2.3, o teorema esta provado para o caso em que [4,b] = [0, 1]

e f(0) = f(1) = 0. Mostraremos, agora, que o caso geral se reduz a este.
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Em primeiro lugar, dada uma fungdo continua g : [0,1] — R, podemos facilmente construir uma
nova fungdo f que satisfaca f(0) = f(1) = 0. Para tanto, basta tomar f : [0,1] — R definida por
f(t) =g(t) —g(0) —t[g(1) — g(0)]. Tal f é limite uniforme de uma sequéncia de polindmios p,. Assim, g é
limite uniforme da sequéncia de polindmios p,(t) + t[g(1) — g(0)] + g(0). Isto ¢, qualquer fun¢do continua
definida em [0, 1] é limite uniforme de polindmios.

Agora, tome uma func¢do continua & : [a,b] — R. Definindo g : [0,1] — R, g(s) = h((1 —s)a + sb),
temos que g é limite uniforme de uma sequéncia de polindmios q,. Logo, q,((t —a)/(b —a)) é uma

sequéncia de polindmios que aproxima i uniformemente. Isso conclui a demonstragdo do teorema. O

No caso especial em que a funcgéo f é de classe C¥, k € IN, a demonstracéo pode ser levemente modifi-
cada para mostrar que a i-ésima derivada de f (para 0 < i < k) é aproximada pela sequéncia das i-ésimas
derivadas dos polindmios p,. Mais do que isso, a demonstragdo pode ser adaptada para fungdes reais de
vérias varidveis.

Uma consequéncia importante do Teorema de Aproximagdo de Weierstrass é que o espago ¢ ([a, b]; R)

é separavel.
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Capitulo 4

Em Espacos Métricos

4.1 Teorema de Ascoli-Arzela em Espagos Métricos

Aqui apresentaremos uma generaliza¢do do Teorema 3.1.1 para subconjuntos de ' (K; N), onde K e N
sdo espagos métricos e K é compacto. Primeiro fazemos algumas defini¢oes.

Dizemos que um subconjunto X de um espaco métrico M é relativamente compacto quando seu fecho X
é compacto. Pela Proposicdo 2.0.5, isso equivale a dizer que toda sequéncia de X possui uma subsequéncia
convergente, a diferenga aqui sendo que ela pode convergir para algum ponto fora de X.

Seja .# um conjunto de fungdes f : M — N, onde M e N sdo espagos métricos. Dado x € M,

denotaremos .7 (x) = { f(x) | f € Z }.

Lema 4.1.1. Se uma sequéncia equicontinua de aplicagdes f, : M — N converge simplesmente para f : M — N,

entdo o conjunto F = {f, f1, fa, ... } é equicontinuo.

Demonstra¢do: Dadoa € Mee > 0, existe 6 > 0 tal que d(x,a) < 6 = d(fu(x), fu(a)) < €/2, para todo
n € IN. Fazendo n — oo, d(f(x), f(a)) < e/2 < e. Entdo, para todoa € M,

d(x,a) <6=d(g(x),g(a)) <e,

qualquer que seja g € 7.
O

O préximo lema é muito 1til, pois nos diz que se as hipdteses sdo satisfeitas, é suficiente mostrar que
a sequéncia converge simplesmente para que fique provado que ela converge uniformemente. A demons-
tracdo consiste basicamente de usar a equicontinuidade para montar uma cobertura aberta e, através da

compacidade, extrair dela uma subcobertura finita.

Lema 4.1.2. Sejam M, N espagos métricos. Se uma sequéncia equicontinua de aplicagoes f, : M — N converge

simplesmente para f : M — N, entdo a convergéncia é uniforme em cada parte compacta K C M.
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Demonstra¢ao: Seja ¢ > 0. Pela convergéncia simples, para cada x € M, existe n, € N tal que n >
ny = d(fu(x), f(x)) < €/3. Pelo Lema 4.1.1, {f, f1, f2,... } é equicontinuo. Logo, cada x € M é centro
de uma bola aberta B, tal que y € By = d(fu(y), fu(x)) < €/3ed(f(y), f(x)) < &/3. Entdo, U,ck Bx €
cobertura aberta de K. Pela compacidade, existem x1, x2,...,x; € M tais que K C By, U---U By,. Tome
np = max{ny, ..., My, }.

Sen >mnpex € K, entdo existei € {1,...,k} tal que x € B,,. Entao,

A(fa(x), f(x)) = d(fa(x), fu(xi)) +d(fa(xi), fO0)) +d(f (), f(¥)) <3+ 3+35 =6

0 que prova o lema.

O lema seguinte usa o anterior de base e mostra que, se cada .#(x) for completo, basta a sequéncia
convergir simplesmente em um conjunto denso para que a convergéncia seja uniforme em cada parte

compacta.

Lema 4.1.3. Sejam M, N espagos métricos e seja f, : M — N uma sequéncia equicontinua de fungoes. Denotemos
F ={f1, fa, ... }. Suponha que para cada x € M, o conjunto .7 (x) tem fecho completo em N. Dat, se (f,) converge

simplesmente num subconjunto denso D C M, entiio ( f,) converge uniformemente em cada parte compacta de M.

Demonstra¢do: Note que, pelo Lema 4.1.2, é suficiente mostrar que (f,) converge simplesmente em todo
0 espaco. Devido a completeza de .7 (x), é suficiente mostrar que, para todo x € M, a sequéncia (f,(x)) é
de Cauchy.

Tome ¢ > 0. Devido a equicontinuidade, para cada x € M existe B(x,r) tal que se y € B(x,r) =
d(fu(y), fu(x)) < €/3, para todo n € IN. Agora, sejay € DN B(x,r). Sabemos que a sequéncia (f,(y))
converge, portanto é de Cauchy. Assim, tomando ny € IN tal que m,n > ng = d(fu(y), fn(y)) < €/3,

temos

m, > o = d(fu(x), fu(x)) < d(fun(x), fn(¥) + d(fu(¥), fu(y) + d(fu(y), fu(x)) <,

0 que mostra que a sequéncia é de Cauchy. O

Passemos ao teorema. A demonstragdo que apresentaremos aqui pode ser encontrada no capitulo 8 do

livro [3].

Teorema 4.1.4 (Teorema de Ascoli-Arzela em Espagos Métricos). Sejam K e N espagos métricos, com K com-

pacto. O subconjunto % C € (K; N) é relativamente compacto se, e somente se valem:
1. .F é equicontinuo;
2. Para cada x € K, o conjunto .7 (x) é relativamente compacto em N.
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Demonstragdo: Primeiro, suponha que .# seja relativamente compacto. Para x € K, seja vy : € (K; N) —
N dada por v,(f) = f(x). E um fato bem conhecido que esta fungdo é continua. Mas v,(.%) = .7 (x).
Como fungdes continuas levam conjuntos compactos em conjuntos compactos, é facil ver que elas levam
conjuntos relativamente compactos em conjuntos relativamente compactos. Concluimos, entéo, que F (x)
é relativamente compacto para todo x € K.

Agora, tome a € K qualquer e ¢ > 0. A fungdo ¢ : .Z x K — R, definida por ¢(f,x) = d(f(x), f(a)) é

continua, pois composicdo de fung¢des continuas é continua. Através da Proposicdo 2.0.2, usando apenas a

compacidade de .7, obtemos 6 > 0 tal que, para toda f € .F, com x,y € K

d(x,a) <= |o(f,x) —o(f,a)] <e

Isto é,

d(x,a) <6 = |d(f(x), f(a)) —d(f(a), f(a))| <e

ou, mais precisamente,

d(x,a) <d=d(f(x),f(a)) <e.

Isto mostra que . é equicontinuo em todo ponto a4 € K, o que implica que .7 também o é. Assim, as
condicdes (1) e (2) sdo necessérias para que .# seja relativamente compacto.

Para a reciproca, basta mostrar que toda sequéncia de .# tem uma subsequéncia que converge. Como
sabemos que, para todo x € K, .7 (x) é compacto, ele serd completo. Daf, pelo Lema 4.1.3, basta provar
que toda sequéncia de .# tem uma subsequéncia que converge simplesmente em algum conjunto denso
D C K. Para isso, estabeleceremos uma relagao entre as restri¢des das fung¢des a D e pontos de um conjunto
compacto.

Seja D = {x1,x2,... } um subconjunto de K enumeréavel e denso, cuja existéncia é garantida pelo Coro-
lario 2.0.6. Paracadan € IN,seja L, = m C N. Pela Proposicao 2.0.8, o produto cartesiano L = [];2; Ly,
é compacto. Agora, associamos cada f € .# ao ponto f’ de L que tem f(x,) como sua n-ésima coordenada.
Note que f’ é portanto, essencialmente a restricdo de f a D. Consequentemente, a sequéncia de fungdes
(fn) converge simplesmente em D se, e somente se, a sequéncia (f;,) converge em L. Como L é compacto,
(f;;) tem uma subsequéncia que converge, portanto a subsequéncia correspondente de ( f,,) converge sim-
plesmente em D. Pelo Lema 4.1.3, isto implica que esta subsequéncia converge uniformemente em K. Logo,

Z é relativamente compacto.

O

Agora observamos que, no casoem que N C Re K = [a,D] paraa,b € Rea < b, avolta do teorema
acima é apenas uma reformulacdo do Teorema 3.1.1. Fazemos isso mostrando que um pode facilmente ser
provado a partir do outro.

Suponha primeiro que .# C ¢ (K; N) é limitado e equicontinuo. A condigdo (1) do Teorema 4.1.4 esta
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satisfeita. Além disso, como .# é limitado, existe M € R, M > 0, tal que ||f| < M para todo f € .Z.
Mas entdo, para todo x € Ketodo f € %, |f(x)| < M. Portanto, . (x) C R é limitado. Mas, nos reais,
um conjunto fechado e limitado é compacto. Assim, .7 (x) é relativamente compacto. Isso mostra que a
condicdo (2) estd satisfeita. Aplicando 4.1.4, temos que .Z é relativamente compacto. Mas, pelo Teorema
2.0.5, isso implica que .# é totalmente limitado.

Agora, suponha que .# é equicontinuo e que .Z (x) é relativamente compacto para todo x € K. Quere-
mos mostrar que .% é limitado, para poder usar o Teorema 4.1.4. Como o fecho de .# (x) é limitado, .# (x)
também é. Isto é, para x € K, existe M, > 0 tal que |f(x)| < My, paratoda f € .#. Agora, tome x € K.
Como .7 é equicontinuo, existe ry > 0 tal que |y — x| < rx = |f(y) — f(x)| < 1, Vf € .Z. Mas entdo,
ly—x| <ry = f(y) < My+1, Vf € Z. Como U,cx B(x;rx) é uma cobertura aberta de K, podemos
extrair dela uma subcobertura finita B(x1;7y,) U - -+ U B(xy;7y,). Tome M = max{My,, -+, My, }. Entdo,
sex € K, existej € {1,--- ,n}talque x € B(xj;rx/). Dai, f(x) < My, +1 < M+1, para toda f € .Z. Isso

prova que .# é limitado.

4.2 Teorema de Ascoli-Arzela em Espacos Métricos Localmente Compactos

Separaveis

Como ja foi discutido quando o visitamos na reta, uma aplicagdo importante do Teorema de Ascoli-
Arzela é como ferramenta para mostrar que uma sequéncia de fungdes continuas definidas em um com-
pacto possui uma subsequéncia que converge uniformemente. Suponha, no entanto, que queremos estudar
uma sequéncia de fungdes definidas em um espago métrico que nao seja compacto. E facil verificar que as
condicdes do Teorema 4.1.4 ndo sdo suficientes para garantir a convergéncia uniforme de uma subsequén-
cia em todo o espago. De fato, tomando a sequéncia f,, : R — R dada por f,(x) = x/n, é facil verificar
que ela é equicontinua e limitada em cada x € R. No entanto, nenhuma subsequéncia dela converge

uniformemente em toda a reta.

Por outro lado, podemos aplicar 4.1.4 em cada parte compacta K de R, concluindo assim que ( f,,) possui
uma subsequéncia que converge uniformemente em K. Note, porém, que nada nos garante que é a mesma
subsequéncia que converge em cada compacto.

Com essa discussdo em mente, podemos pensar em definir uma nogdo de convergéncia de sequéncias
de fungoes definidas em todo IR, mais fraca do que a convergéncia uniforme, na qual dizemos que uma
sequéncia converge a uma funcgao g se, em cada parte compacta de IR, a sequéncia converge uniformemente
para g. Vejamos agora que, dados M e N espacos métricos, pode ser definida em %' (M, N) uma métrica
que da origem a essa nog¢do de convergéncia, desde que M seja localmente compacto e separdvel. Note que

M nado precisa ser compacto.

Primeiro, observe que poderiamos escolher m compactos Li,---,L,, em M e definir em ¢ (M, N) a
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métrica

dn(f,g) = d(f|L1,8|L1) + - +d(f|Lm, §|Lm),

onde d é a métrica da convergéncia uniforme, que estd bem definida quando nos restringimos a um pedago
compacto do dominio. E facil notar que se temos uma sequéncia (f,) que converge para g segundo a mé-
trica d,,, entdo (f,) converge uniformemente para g em Ly, L, - - - , L,,. Na verdade, mesmo se a quantidade

de compactos fosse infinita enumeréavel, ainda poderiamos definir

i 1 f |Li,g|Li)
=21 d(f|L;, g|Li)
Novamente, se ( f;;) convergisse para ¢ segundo essa métrica, ( f,;) convergiria uniformementeem Ly, Ly, - - -
No entanto, isso ainda ndo ¢é suficiente para garantir que a sequéncia convergiria em todos os compactos
do espago, uma vez que a quantidade deles poderia ser ndo enumeravel. Felizmente, como M é local-
mente compacto e separdvel, garantir a convergéncia em uma quantidade enumeravel de compactos sera

suficiente para garantir a convergéncia em todos eles.

De fato, pela Proposicado 2.0.10, existem Ky, K, - - - compactos em M tais que K,, C intK,,11 para todo
neNeM = ;- Ky. Seja K C M compacto. Dai, K C |J;; int K,, é uma cobertura de K, da qual podemos
extrair uma subcobertura finita K C intKjy, U---UintK,,. Assumindo, sem perda de generalidade, que
ny < ny < --- < ny, temos que intKy,, U---UintK,, = intK,, C K;,. Entdo K C K;,. Assim, se (fn)
converge a ¢ em cada Kj, ela converge a ¢ em todo compacto K de M, pois K estara dentro de algum K;.

Entao tomando
il d( flKuglK)
2'1 f‘Kug|K)

i=

temos uma métrica em ¢’ (M, N) segundo a qual uma sequéncia (f,) converge a g se, e somente se, (fy)
converge a g uniformemente em cada parte compacta de M. Nosso objetivo, agora, é provar uma versao
do Teorema de Ascoli-Arzela no espago métrico (¢'(M, N),d*).

Primeiro considere a fungao

[ee]

¢:(¢(M,N),d) — [[€¢(Ki,N)

i=1

dada por ¢(f) = (f|K;)ien. Se consideramos [;~; ¢ (K;, N) munido da métrica produto, entdo ¢ é uma

imersao isométrica.
Lema 4.2.1. A imagem de ¢ é subconjunto fechado de ;2 € (K;, N).

Demonstra¢do: Seja F a imagem de ¢. Note que F é formado pelas sequéncias de funcdes u = (u;) tais
quei < j = u; = uj|K;. Suponha, por contradicio, que v = (v;) € Fe v ¢ F. Dai, existem i < j e x € K;

tais que v;(x) # vj(x). Seja e = [v;(x) —v;(x)| > 0. Tome u = (u;) € F tal que d*(u,v) < 21]2+£ Como
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u;(x) = uj(x), pela desigualdade triangular,

e = [vi(x) = vj(x)] < Joi(x) — ui(x)] + uj(x) - vj(x)]

Entdo |u;(x) — v;(x)| > &/2 ou |uj(x) — vj(x)| > &/2 pois, caso ambas as afirmacdes fossem fal-
sas, haveria uma contradi¢do. Como os dois casos sdo similares, suponha |u;(x) — v;(x)| > €/2. Entao

d(u;,v;) > €/2. Uma vez que a fungdo x/ (1 + x) é crescente, temos

e g/2 < d(u;,v;)
2+e  1+4+e/2 = 1+d(u;,v)
Mas entdo,
(1,0) Zi d(Um, vm) Zl d(u;,v;) >l £ Zl- 3 ’
2l d(w, o) T 2014 d(u, ) T 20246 T 2124-¢
o que é uma contradigdo. Assim, F é fechado. O

Agora, estamos prontos para enunciar o Teorema. A demonstra¢do a seguir pode ser encontrada no

capitulo 8 do livro [3].

Teorema 4.2.2 (Teorema de Ascoli-Arzela em Espagos Métricos Localmente Compactos e Separaveis). Se M
é espago métrico localmente compacto e separdvel, entdo um conjunto E C (¢ (M, N),d*) é relativamente compacto

se, e somente se valem:
1. E é equicontinuo;
2. E(x) C N é relativamente compacto, para cada x € M.

Demonstra¢do: Devido a isometria ¢ : (¢(M, N),d*) — F, temos que estes dois espagos sdo homeomor-
fos. Entédo E é relativamente compacto em (¢ (M, N),d*) se, e somente se, ¢(E) é relativamente compacto
em F. Mas, pelo Lema 4.2.1, F é fechado em [ ]2, ¥ (K;, N). Afirmamos que ¢(E) é relativamente compacto
em F se, e somente se, ¢(E) é relativamente compacto em [];>; ¢ (K;, N). De fato, se toda sequéncia em
¢(E) possui uma subsequéncia que converge para um elemento de F, a mesma subsequéncia converge
para um elemento de [ 2, ¢ (K;, N). Por outro lado, se toda sequéncia em ¢(E) possui uma subsequéncia
que converge a um elemento de []i~; ¢ (K;, N), como ¢(E) C F e F é fechado, este elemento precisa estar
em F.

Entdo, E é relativamente compacto em (¢ (M, N),d*) se, e somente se, ¢(E) é relativamente compacto
em []2; ¢ (K;, N). Mas, pela Proposigdo 2.0.8, para isso ocorrer é necessdrio e suficiente que cada projegao

pi(¢(E)) C €(K;, N) seja relativamente compacta. Porém,

pi(¢(E)) = E|IK; (= {f|K;: f € E}).
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Como as condicdes (1) e (2) valem para E se, e somente se, valem para cada E|K;, a demonstragdo segue

do Teorema 4.1.4. O

Agora, usaremos o Teorema 4.2.2 para obter uma versdo bem mais geral do Corolario 3.1.2, que pode
ser usada mesmo quando o dominio da sequéncia ndo é compacto.

Dizemos que um conjunto E de aplicagdes f : M — N é pontualmente limitado quando E(x) C N
é limitado para todo x € M. Uma sequéncia é pontualmente limitada se o conjunto dos seus termos é

pontualmente limitado.

Coroldrio 4.2.3. Seja M espaco métrico localmente compacto separdvel e seja k € IN. Entdo toda sequéncia equicon-
tinua e pontualmente limitada de aplicagdes f, - M — R¥ possui uma subsequéncia que converge uniformemente

em cada parte compacta de M.

Demonstracio: De fato, em IR, todo conjunto limitado é relativamente compacto. Basta, entéo, aplicar o

Teorema 4.2.2 ao conjunto E = {f1, fo,- - - }. O

4.3 Teorema de Stone-Weierstrass em Espacos Métricos

Em 1937, M. Stone descobriu uma forma de generalizar o Teorema de Aproximagdo de Weierstrass,
fazendo com que ele agora se aplique a fung¢des continuas definidas em um espago topolégico X que apenas
precisa ser Hausdorff e compacto. Este é o chamado Teorema de Stone-Weierstrass. Veremos, primeiro, o
caso em que X é espaco métrico compacto. Comecamos fazendo algumas defini¢oes.

Podemos definir uma multiplicagdo em ¢’ (M;R), tomando que para f,g € € (M;R), f - g é a fungdo
dada por (£ - g)(x) = f(x) - g(x).

Um subconjunto A C ¢’ (M;R) é dito subdlgebra de ¢ (M;R) se é espago vetorialese f,g € A= f-g €
A. A interseccdo de uma familia arbitrdria de subdlgebras é subdlgebra. Damos o nome de subélgebra
geradapor S C ¢ (M;R) a intersecgdo de todas as subalgebras que contém S. Denotaremos esta subalgebra
por A(S). Observamos, ainda, que o fecho de uma subdlgebra é subélgebra.

Usaremos as seguintes notagdes:

Dadas f,g : M — R, (fV g) e (f Ag) sdo as funcdes de M sobre R dadas por (fV g)(x) =
max{f(x),g(x)} e (f A g)(x) = min{f(x),g(x)}, para todo x € M. Se f e g forem continuas, f V g e

f A g também serdo.
Lema 4.3.1. Existe uma sequéncia de polindmios p, tais que limy,_, p,(t) = /t uniformemente para t € [0,1]

Demonstracio: O primeiro passo é construir uma sequéncia de polindmios cujo limite simples seja v/t.

Esta sequéncia é definida indutivamente, pondo pp = 0O e

pusa(£) = palt) + 5[t — pA(1).
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Para um dado t € [0,1], seja f; : [0,1] — R, fi(x) = x+ (t — x2)/2. Entdo f/(x) = 1 —x > 0 para
todo x € [0,1]. Assim, f; é crescente. Além disso, f;(0) = /2 eft(\/f) = /t. Portanto, se 0 < x < /1,
entdo 0 < t/2 < fi(x) < \/t. Sabemos que po(t) = 0. Entdao 0 < po(t) < \/t. Também sabemos que
p1(t) = fi(po(t)). Logo, 0 < pi(t) < v/t Dai p1(t) estd no dominio de f; e p2(t) = fi(p1(t)), o que implica
que0 < p(t) < V/t. Por inducio, paratodon € IN,0 < p,(t) < V/t. E bom lembrar que esta desigualdade

vale para todo t € [0,1]. Usando ela, temos que

_ 2 _ 2
P <t= 02 t=t- g z0s TP om0 0 ),

e portanto,

pu(t) < puta(t).

Entdo, demonstramos que, dado t € [0,1], a sequéncia (p,(t)) é crescente e limitada por v/, portanto con-
verge. Para cada tal ¢, definimos ¢(t) = lim,_,« pn(t). Fazendo n — oo na defini¢do indutiva de p,,+1(t),
obtemos ¢(t) = ¢(t) + (t — ¢*(t))/2 o que implica ¢(t) = /t. Pela Proposigdo 2.0.4, a convergéncia é
uniforme. Observe que p,(0) = 0, para todo n € IN. O

Lema 4.3.2. Em qualquer intervalo compacto [a, b], a fungdo f(x) = |x| pode ser uniformemente aproximada por

polindmios desprovidos de termo constante.

Demonstra¢do: Primeiro, observamos que podemos assumir que o intervalo é da forma [—a, a] para algum
a > 0, uma vez que existe um intervalo dessa forma que contém o intervalo original. Mais do que isso, po-
demos supor que a = 1, uma vez que se (p,) é uma sequéncia de polindmios que aproxima |x| em [—1,1],
tomando q,(t) = a- p,(t/a) obtemos uma sequéncia de polindmios que aproxima |x| em [—a,a]. Por
fim, tomando uma sequéncia p, de polindmios que aproxima v/t em [0, 1], cuja existéncia é garantida pelo
Lema 4.3.1, temos que g, (t) = pn(t?), que é também sequéncia de polindmios, converge uniformemente
para V/#2 = |t| quando t € [—1,1]. Como p,,(0) = 0, g,(0) = 0 para todo n € N. Isto é, os polindmios que

aproximam |x| sdo desprovidos de termo constante. O

Lema 4.3.3. Sejam f, g : M — R fungdes continuas no espago métrico compacto M. Entio |f| € A(f), fV g €

A(f,g) e fNg € A(f,g). Consequentemente, se A C € (M;R) é uma subdlgebra e f,f1,...,fn € A entio
lfleA AV Vfu€A fiN---Nfy €A

Demonstra¢do: Pela Proposicdo 2.0.3, f atinge maximo e minimo em M. Sejam a4 = min,ecp f(x) e b =
maxyeym f(x). Pelo Lema 4.3.2 podemos tomar p,, : [2,b] — R uma sequéncia de polindmios desprovidos
de termos constantes que converge uniformemente para |x| em [a,b]. Entdo lim, e pu(f(x)) = [f(x)]
uniformemente em M. Note que p, o f é uma funcdo da forma c1 - f + ¢« f2+ -+ + ¢y - f*, em que

ci,...,¢cn € R. Portanto, (p, o f) € A(f). Dai, o limite da sequéncia pertence ao fecho de A(f). Isto ¢,
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|f| € A(f). Mas entdo |f —g| € A(f — g) C A(f,g). Nao é dificil verificar que

fvg= %[f+g+\f—g|]

frg=olf+g—If ~sll

Como o fecho de uma subdlgebra também é subalgebra, isso nos mostra que (f V g), (f A g) € A(f,g).
Por fim, se A C ¢ (M;R) é uma subdlgebrae f,fi,...,fn € A, entdo A(f) C Ae A(f1,..., fa) C A.
Logo, |[fl €A, AV Vfu €A fiN-- A fu €A O

Fazemos, agora, uma tltima defini¢do. Dizemos que S C € (M;R) separa os pontos de M quando, dados

x #yemM, existe f € S tal que f(x) # f(y).

Lema 4.3.4. Seja A C € (M;R) uma subdlgebra que separa pontos e contém as fungdes constantes. Dados arbitra-

riamente x # yem Mew, B € R, existe f € A tal que f(x) =we f(y) = B.

Demonstragdo: Como x # y, existe ¢ € A tal que g(x) # g(y). Queremos usar essa g para construir a
fungdo f desejada. Como A é dlgebra e contém as constantes, podemos operar ¢ para obter uma fungdo

que atinja os valores desejados. De fato, basta solucionar o seguinte sistema linear nas incégnitas s e t:

s-g(x)+t=ua
sg)+t=p

Como o determinante do sistema é g(x) — g(y) # 0, ele possui solugdo tnica. Se (s, t) é esta solucdo,
tomando f : M — R, f = s5- ¢+ t obtemos uma funcdo que estd em A e satisfaz as condi¢des desejadas.

O

Logo a seguir, apresentaremos uma demonstragdo do Teorema de Stone-Weierstrass, que pode ser en-
contrada no capitulo 8 do livro [3]. Dada uma fungdo continua f : M — IR, queremos encontrar uma
func¢do no fecho da subdlgebra A que aproxima ela. A ideia é usar o Lema 4.3.4 para encontrar fung¢des
em A que tem o mesmo valor que f em determinados pontos. Devido & continuidade, essas fun¢des apro-
ximam f ao redor desses pontos de coincidéncia. Construimos uma cobertura aberta do dominio usando
esse fato, e usamos a compacidade de M para encontrar uma subcobertura finita. Depois, usamos essa
subcobertura para montar uma fungdo nova, feita dos pedagos das fungdes que estdo localmente préximas
de f. Como a subcobertura é finita, essa funcado seréd feita de uma quantidade finita de pedagos. Pelo Lema

4.3.3, isso garante que a fungdo nova esta no fecho de A.

Teorema 4.3.5 (Teorema de Stone-Weierstrass em Espagos Métricos). Sejam M um espago métrico compacto

e A C €(M;R) uma subdlgebra de funcdes continuas que contém as constantes e separa os pontos. Entdo A é
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denso em € (M;R). Isto é, toda fungio continua f : M — R pode ser uniformemente aproximada por fungdes

pertencentes a A.

Demonstragdo: E suficiente mostrar que para toda f € ¥ (M;R) e todo ¢ > 0 existe ¢ € A tal que | f(x) —
g(x)| < ¢, qualquer que seja x € M. Dados arbitrariamente x,y € M, existe g, € A tal que gy, (x) = f(x)
e gxy(y) = f(v). Isto nos é garantido pelo Lema 4.3.4 quando x # y e é trivial se x = y.

Fixando x € M, devido a continuidade, cada ponto y € M possui uma vizinhanga aberta V,, tal que
z € Vay = guy(z) > f(z) — e Assim, Uyepm Viy € cobertura aberta de M. Devido & compacidade de M,
existemyy,...,y, € Mtaisque M = Vi, U---UVyy, . Seja gx = guy; V- V gxy,- O Lema 4.3.3 nos diz que
gx € A. Fora isso, como gy, (x) = f(x) para todo y, entdo gx(x) = f(x). Por fim, qualquer que sejaz € M,
existei € {1,2,...,n} tal que z € Vy,, 0 que implica que gyy,(z) > f(z) — &. Como g, é definida tomando
o méaximo de todas as gy, em cada ponto, isso nos garante que gx(z) > f(z) — & para todo z € M.

Por continuidade, cada ponto x € M possui uma vizinhanga U, tal que z € U, = gx(z) < f(z) + &
Sendo M compacto, existem x1,...,x,;, € Mtaisque M = U, U---UU,,. Seja g = gy A+ A Qx,-
O Lema 4.3.3 garante que ¢ € A. Ja sabemos que, para todo z € M, g(z) > f(z) —e. Além disso,
existe j € {1,...,m} tal que z € Uy, Dai, gy,(z) < f(z) + e Como g é definida em cada ponto como o
minimo das gy,, isso nos garante que g(z) < f(z) + . Combinando os dois resultados, para todo z € M,
() -g(z)] <e.

Isto conclui a demonstracao. O

Existe ainda uma forma complexa do Teorema de Stone Weierstrass, que nos da uma condigédo suficiente
para uma subélgebra ser densa em ¢’ (M; C), para M compacto. Dessa vez, no entanto, além de exigir que a
subalgebra separe os pontos de M e contenha as fun¢des constantes, também precisamos impor que ela seja
autoadjunta, isto é, que ela contenha a fun¢do conjugada de cada uma das suas fungdes. A demonstragao

desse resultado pode ser feita com facilidade usando a forma real do Teorema de Stone-Weierstrass.
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Capitulo 5
Em Espacos Topologicos

Veremos, agora, que tanto o Teorema de Stone-Weierstrass como o Teorema de Ascoli-Arzela podem
ser generealizados para espagos topolégicos Hausdorff compactos. Comecamos com o Teorema de Stone-

Weierstrass, por ser o mais simples neste caso.

5.1 Teorema de Stone-Weierstass em Espacos Topoldgicos

Apresentaremos aqui uma versdo modificada da demonstragdo dada em [4]. O texto citado utiliza uma
técnica similar a particdes da unidade, mas as alteracdes feitas aqui tornam possivel o uso do conceito ver-
dadeiro. Comegamos definindo os conceitos que serdo necessarios para um espago topoldgico X qualquer.

Dizemos que uma familia (Cy),cr de subconjuntos de X é localmente finita quando todo ponto x € X
possui uma vizinhanca que intersecta apenas um ntmero finito dos conjuntos C,.

Dada uma fungdo f : X — IR, definimos o seu suporte:

supp(f) ={x e X[ f(x) #0}.

Observe que se x ¢ supp(f), entdo existe uma vizinhanga de x onde f é identicamente nula.

Seja (¢))rer uma familia de fungdes ¢, : X — R tais que a familia (supp(@,))rcr € localmente finita.
Entdo, para todo x € X, temos apenas uma quantidade finita de fun¢des ¢, para as quais ¢,(x) # 0.
Entdo, podemos definir a fungdo ¢ : X — R, pondo ¢ = ) ; @1. Observe que se para todo A € L, ¢,
for continua, entdo ¢ serd continua. De fato, para cada ponto x € X, existe uma vizinhanca de x na qual ¢
é igual a uma soma finita de fung¢des continuas em x. Portanto, ¢ serd continua em x.

Uma particio da unidade em X é uma familia (¢, ) cr de fungdes continuas ¢ : X — R tais que:
1. ParatodoA € L,0 < ¢,.

2. A familia (supp(¢,))aer € localmente finita em X.

3. Z/\EL Pr = 1.

25



Dizemos que uma parti¢do da unidade (¢)),er. € estritamente subordinada a cobertura (Cy)cL se, para
cadaA € L, supp(pa) C Cy.

Agora, seja X um espaco topolégico Hausdorff compacto. Comecamos observando que, se A C ¢ (X, R)
é uma subdlgebra que contém as func¢des constantes, entdo, para toda f € A e todo polindmio p, temos que

po f € A. De fato, tal composigdo serd uma fungdo da forma
anf" +an 1 f" - anf +ag,

para algumn € N ea,,---,a0 € R. Sabemos que esta funcdo estda em A devido as propriedades de
algebra. Assim, encontrando uma fung¢do na algebra com determinado comportamento e compondo-a
com um polindmio apropriado, podemos provar a existéncia de uma fungdo de interesse na dlgebra. Esta
ideia revela uma nova aplicacdo do Teorema de Aproximagao de Weierstrass: Podemos usa-lo para mostrar

que uma funcéo especifica estd no fecho da élgebra.

Lema 5.1.1. 1. Dados a,b € Rcom 0 < a < b < 1, existe uma sequéncia de polinémios p, : [0,1] — R que

aproxima uniformemente a fungio r : [0,1] — R dada por

1 se0<x<a
r(x) = 5 +1 sea<x<b-
0 seb<x <1

2. Dado M € R, com M > 1, existe uma sequéncia de polindmios q, : [1, M] — R que aproxima uniforme-

mente a fungio 1 no intervalo [1, M).

Demonstra¢io: De fato, tanto a fung¢do » como a fungéo % sdo continuas e definidas em um intervalo

compacto. O lema segue do Teorema 3.2.4. O

Lema 5.1.2. Sejam X um espago topoldgico Hausdorff compacto e A C € (X, R) uma subdlgebra que contém as
constantes e que separa pontos. Seja x € X e U vizinhanga aberta de x. Dai existe V. C U vizinhanga aberta de x e

@ € A tal que:
1. 0< ¢ <1
2. supp(¢p) C U;
3. ¢(s) =1,Vse V.

Demonstragdao: Note que a parte 1 do Lema 5.1.1 simplifica bastante nosso trabalho. De fato, para quais-

quer a,b € Rcom 0 < a < b < 0, afungao r citada nela tem o seguinte grafico:
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Entdo, basta encontrar uma fungdo em A que “mantenha alguma distdncia” entre os pontos fora de U e
0. Isto é, se conseguirmos encontrar uma constante ¢ > 0 e uma funcdo ¢p € A, 0 < ¢ < 1, tal que
x ¢ U = ¢P(x) >c >0, podemos escolher 0 < a < b < ¢ < 1, e tomar r como no enunciado da parte 1
do Lema 5.1.1. A composigdo r o ¢, portanto, se anulard em todos os pontos fora de U e estard em A.

O primeiro passo para encontrarmos a fun¢ao i € A desejada é encontrar, para um dado t # x, uma
func¢do que se anule em x e valha 1 em t. Usamos o fato de que A separa pontos.

Sejat € X, t # x. Sabemos que existe uma fungdo f; € A tal que f;(t) # fi(x), entdo fi(t) — fi(x) # 0.
Definimos entdo g; : X — R pondo g;(s) = % Observe que g;(x) = 0 e g(t) = 1. Além disso,
gt € A, pois ela pode ser obtida multiplicando f; por um escalar e depois somando o resultado a uma
constante. Agora, definimos h; pondo h;(s) = ¢?(s). Note que h; € A pois é produto de fungdes em A.
Temos entdo que hi(x) =0, he(t) =1ehy > 0.

Como, para todo t # x, a funcdo h; é continua e vale 1 em £, existe uma vizinhanga de t que é “mantida
a alguma distancia” de zero por ;. Nossa abordagem agora é usar vdrias dessas vizinhangas para cobrir
X\ U. Combinando as fungdes h; correspondentes, obteremos uma fungdo que faz isso para todos os

pontos fora de U.

Seja K = X \ U. Como K é fechado e X é compacto, K é compacto. Para cada t € X com t # x, defina
Vi={seX|h(s)>1/2}.

Note que V; é vizinhanga aberta de ¢, uma vez que h; é continua e t € V;. Entdo |J;cx V; € uma cobertura
aberta de K. Pela compacidade de K, existem t1,--- ,t, € Ktaisque K C V;, U---UV,,. Tome h = 217‘1:1 ht],.
h, sendo somatoria finita de fungdes em A, estd em A. Além disso, se t € K, existe k € {1,---,n} tal que

t € Vj. Dat:

N =

h(t) = ihti > htk(t) >
=1

Por fim, como h é continua definida em um compacto, sua norma em X estd bem definida. Tomando
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P(s) = H( H) temosque 0 < ¢ <le,set € K, ¢(t) >

Seja c = ﬁ Tome a,b € R taisque 0 < a < b < c < 1e aplique a parte 1 do Lema 5.1.1 para obter

1
2[| 1

uma sequéncia de polindmios p, : [0,1] — R que aproxima uniformemente a fungdo r que corresponde
aos a e b escolhidos. Para cada n, p, o € A. Além disso, a sequéncia (p, o ¢) converge uniformemente
pararoy. Entdoroyp € A. Seja ¢ = ro ¢.

Mostremos que ¢ é a fungdo desejada. De fato, 0 < ¢ < 1. Também vimos que s € K = (s) >
X | gs) #0 eZ = {s € X | ¢(s) < c},
temos W C Z C U. Como Z é fechado, supp(¢) = W C Z C U. Entdo supp(¢) C U. Por fim,

m

¢ = ¢(s) = 0. Mas entdo, tomando W = {s

tome V = {s € X | ¢(s) < a}. Dai V é vizinhanga aberta de x e, se s € V, ¢(s) = 1. Isso conclui a

demonstracao. O

Lema 5.1.3. Sejam X um espago topolégico Hausdorff compactoe A C € (X, R) subdlgebra que contém as constan-
tes e separa pontos. Para cada x € X, seja Uy vizinhanga aberta de x. Dai, existem x1,- - ,x, € Xeg1, -+ ,8n € A

tais que (g;)!_, € particdo da unidade estritamente subordinada a (U, )?_,.

Demonstragdao: Pelo Lema 5.1.2, para cada Uy obtemos V; uma vizinhanga aberta de x e uma fungdo ¢x.
Veja que J,cx Vi é cobertura aberta de X. Pela compacidade de X, é possivel obter xy, - - - , x, € X tais que
X C Vi U+ UVy,. Definimos entdo ¢ = Yi'; ¢x;. Se x € X, existek € {1,---,n} tal que x € Vy,. Mas
entdao P(x) > @y (x) =1 > 0. Isto é, a fungao ¥ nunca se anula em X. Por fim, tome g; = %,]' =1,---,n
Sejaj € {1,---,n}. Primeiro, note que como ¥ é soma de fun¢des em A, e como fecho de subélgebra
é subalgebra, entdo i € A. Agora, ¢ é fungdo continua definida em um compacto. Pela Proposigao 2.0.3,
¥ atinge maximo em X. Denotamos ele por M. Pela parte 2 do Lema 5.1.1, obtemos uma sequéncia de

polindmios g, : [1,M] — R que aproxima 1 uniformemente no intervalo [1, M]. Entdo, a sequéncia

gn © P, que estd em A, aproxima uniformemente i em X. Como A é fechado, isto mostra que i € A.

Portanto, g; é produto de fungdes em A, que é dlgebra. Assim, estd em A.

Para cada j, ¢; > 0. Dai, g; > 0. Também, a familia (supp(g;))i_, é finita, portanto localmente finita em

X. Por fim, se x € X, temos

n o @y L n ¢(x) _
L= Ly = i 5090 =y T8

Entdo, a familia (g;)]"_; é particdo da unidade em X. Além disso, para cada j, temos que supp(g;) C Uy,

pois supp(¢x;) C Uy;. Entdo ela é estritamente subordinada a (Uy,)7 ;. O

Agora, estamos prontos para provar o teorema. Note que para provar que A é denso em %' (X,R), é
suficiente mostrar que para todo ¢ > 0 e toda f € %(X,R), existe ¢ € A tal que ||f — g|| < & Nossa
abordagem serd a seguinte: para cada x € X, definimos V, = {y € X : |f(y) — f(x)| < 5}. Observe
que cada Vy é uma vizinhanga aberta de x em que a funcdo f é aproximada pela fun¢do constante f(x).

Utilizando a compacidade de X, obteremos uma cobertura X C Vy, U---UV,, . Note que as constantes
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f(x1), -+, f(xy) sdo fungdes em A que aproximam f em pequenas regides, e essas regides juntas cobrem
X. O tnico problema é que se construissemos uma func¢do que aproximasse f em todo X “colando” as
constantes, ela ndo seria continua e, mesmo se fosse, poderia ndo pertencer a A. A solucio é fazer uma

espécie de “colagem suave” usando a parti¢do da unidade do Lema 5.1.3.

Para que a ideia fique mais clara, vejamos o que aconteceria se n = 2. Neste caso, X C Vi, UV,
e temos ¢1,92 € A como no Lema 5.1.3. Definimos entdo ¢ = f(x1) -1 + f(x2) - 2. Seja x € X. Se
x € Vi, \ Vi, g(x) = f(x1), pois x ¢ supp(g2). Da mesma forma, se x € Vi, \ Vi, g(x) = f(x2). Em
ambos estes casos, ¢ aproxima f pela propria definicdo de Vi, e V,,. Por outro lado, se x € Vi, NV,
g(x) = f(x1) - g1(x) + f(x2) - g2(x). Como g1(x),g2(x) > 0e g1(x) + g2(x) = 1, neste altimo caso g(x) é
uma média ponderada de f(x1) e f(x2). Portanto, o valor g(x) estd entre f(x1) e f(x2). Como x € Vi, NV,
as fungdes f(x1) e f(x2) ambas aproximam f, portanto ¢ também aproxima f neste conjunto. Entdo, a
fungdo g aproxima f em todo X, mas o mais interessante é que g é continua e pertence a A. Passemos a

consideragdes mais rigorosas.

Teorema 5.1.4 (Teorema de Stone-Weierstrass em Espacos Topolégicos). Seja X espaco topoldgico Hausdorff
compacto. Se A C € (X,R) é subdlgebra que contém as constantes e separa pontos de X, entdo A é densa em

% (X,R).

Demonstragdo: Seja f € ¢(X,R) ee > 0. Para cada x € X, definimos:

Vi={y € X:[f(y) - f(x)] < 5}

Como f é continua, V, é vizinhanga aberta de x. Pelo Lema 5.1.3, existem x1,--- ,x, € Xe g1,- - ,gn € A
tais que (g;)_, é particdo da unidade estritamente subordinada a (Vy,)"_;. Definimos g = f(x1)-g1+--- +

f(xn) - gn € A

Dai, se x € X,

™=

f(x) =g = [f(x) - 1=g(x)| = |f(x) - Y &i(x) - if(xi) &) < ) &i()If(x) = flxi)l.

I
—_
Il
—
I
—_

Agora,seja] = {j e {l,--- ,n} | x € Vs, }. Mas, se x ¢ Vi, gk(x) = 0. Ao mesmo tempo, se x € Vy,,
|f(x) — f(xx)| < &/2. Dai,

f(x) —g(x)] < égi(x)lf(x) ~ Sl = Ealf () — £l < ggmx); ==
Entdo, || f — g|| < &/2 < €. Isso conclui a demonstragdo do teorema. O
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5.2 Teorema de Ascoli-Arzela em Espacos Topolégicos

Para provar o Teorema de Ascoli-Arzela em espacos topolégicos, usaremos uma abordagem bastante
diferente da que foi vista em espagos métricos. Ela pode ser encontrada em [1]. Comegamos com algumas
definicoes.

Seja (D, <) um conjunto parcialmente ordenado. D é dito conjunto dirigido se, para quaisquer a,b € D,
existe c € Dtalquea < ceb < c. Se D é conjunto dirigido e X é um espago topoldgico, uma funcdo
f : D — X é dita uma rede em X. Dizemos que a rede converge para o ponto x € X se, para cada
vizinhanga V de x, existe dy € D tal que d > dy = f(d) € V.

Na demonstragdo do lema seguinte, utilizaremos a seguinte notacdo: ser € R, r > 0 e A é um espaco
vetorial, entdo

r-A={r-alacA}.

Lema 5.2.1. Sejam X um espago de Banach e {Uy }yep uma rede de operadores lineares limitados U, : X — X.
Se lim, Uy (x) = x uniformemente em um conjunto limitado K e se U, (B[0; 1]) é relativamente compacto para todo

« € D, entdo K é relativamente compacto.

Demonstragdo: Como X é espago de Banach, K é completo. Entdo, pela Proposi¢do 2.0.5, para mostrar que
K é relativamente compacto, basta mostrar que K é totalmente limitado. Por sua vez, isso pode ser feito
mostrando que K é totalmente limitado.

Seja ¢ > 0 dado. Como lim, U, (x) = x uniformemente em K, existe a € D tal que,
U (k) — k|| < % Vk € K
Agora, sabemos que K é limitado. Entdo, existe r > 0 tal que K C BJ0;r]. Mas, pela linearidade de U,,
U,(B[0;r]) = U,(r - B[0;1]) = r - U,(BI0; 1]).

Como U, (B]0;1]) é relativamente compacto, U,(B[0;7]) também é. Entdo U, (K) é relativamente compacto,
pois estd contido em U, (B[0;r]).
Pela Proposigao 2.0.5, U, (K) é totalmente limitado. Entdo existem ky,--- ,k, € K tais que, para todo
ke K, existej € {1,---,n} tal que
Ua (k) = Ualky) | < 5.

Mas entdo, para um dado k € K, existe j € {1,-- -, n} tal que

S € €
K=Kyl < e = Ua ) + 1 Ua(k) = Ul | + |Ualh) Kyl < 5+ 5 + 5 =

Entdo, K é totalmente limitado, o que conclui a demonstragéo. O
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Para um dado espago topolégico Hausdorff compacto S, definimos B(S) como o conjunto de todas as
fungoes limitadas f : S — R. Por sua vez, definimos B(S; P(S)) como o fecho em 5(S) do conjunto de to-
das as combinacdes lineares de fungdes caracteristicas de subconjuntos de S. Usaremos %' (S) para denotar
o conjunto das fungdes continuas de S em R. Sabemos que B(S) é espaco de Banach. Consequentemente,
B(S;P(S)) também é. Dado E C S, detoratemos por xr a fungdo caracteristica de E.

Pode parecer curiosa a ideia de se estudar o espaco B(S;P(S)), mas note que ele é bem extenso. De

fato, ele contém %'(S):
Proposigdo 5.2.2. Se S é espago topoldgico Hausdorff compacto, entiio ¢ (S) C B(S;P(S)).

Demonstragdo: Seja f € €(S) e ¢ > 0. Queremos obter uma combinagéo linear de fungdes caracteristicas
que esteja a distancia € de f. Usamos uma ideia similar a que foi usada na demonstragdo do Teorema de

Stone-Weierstrass desta sessdo. Para cada s € S, defina

Vo={xes:|f(s) = f(x)| < 5}

Como f é continua, V; é vizinhanga aberta de s. Da cobertura S C (Jsc5 Vs, extraimos uma subcobertura
finita S C Vi, U---UV;,. Definimos entdo E; = Vi, Ep = Vi, \ Ey,E3 = Vi, \ (E1UE2), - ,E, = V5, \
(EyU---UE,_1). Podemos supor, sem perda de generalidade, que cada E; é ndo vazio. Seja entdo x; €
Ei,---, x4 € E,. Note que os conjuntos E; sdo disjuntos e que a unido deles é S. Agora, definimos g: S —
R pondo g(x) = YiL; f(xi)xE,(x). Entdo, se x € S, existe j € {1,---,n} tal que x € E;. Dai, g(x) = f(x/).
Entdo, [f(x) — g(x)| = [f(x) — f(xj)|. Mas x € E; C V;;, entéo |f(x) — f(x;)| < /2. Como isso vale para
todo x € S, temos que ||f — g|| < /2 < e&. Como conseguimos obter combinagdes lineares de fun¢des

caracteristicas arbitrariamente proximas de f, entdo f € B(S; P(S)). O

Proposigdo 5.2.3. Seja K C B(S; P(S)) um conjunto limitado. Suponha que, para cada € > 0, existem subconjun-

tos disjuntos E1,- - - ,E, C S cuja unido é S e pontos s; € Eq,- -+ ,8, € Ey, tais que, para cadai € {1,--- ,n},

supf(s)) — f(s)l <¢, VfeK.

seE;

Entdo, K é relativamente compacto.

Demonstra¢do: Nossa estratégia serd usar o Lema 5.2.1. Comegamos definindo um operador linear. Seja
A o conjunto de todos os conjuntos da forma a = {Ey,---,E,;s1,---,su}, em que Ey,--- ,E, C S sdo
subconjuntos disjuntos de unido Ses; € E;, i = 1,---,n. Munimos A da ordem <, na qual dizemos
— . I / 1. o! ! : z o~
quea = {Ey,--- ,Ey;s1,-- ,5n} < a' = {E},--- ,E;, ;s ,s,} se cada conjunto E; em a é unido de
conjuntos E’ em a'. Isto é, os conjuntos de a’ sdo “obtidos” particionando conjuntos em 4. Com esta ordem,

A é conjunto dirigido.
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Agora, para cada a € A, definimos o operador U, : B(S; P(S)) — B(S;P(S)) dado por U,(f) = fa,

em que

fa= zf(si)XEi'

E facil verificar que U, ¢ linear.

Note que o que o operador faz é “aproximar” f € B(S;P(S)), particionando S em n conjuntos, to-
mando o valor de f em um ponto de cada um deles e aproximando f neste pedago todo como uma fungao
constante com esse valor. Note que se a4 < a/, esperamos que f, seja uma aproximacdo melhor de f do
que f,, pois estaremos pegando uma particdo mais fina de S. Ilustramos esta intuigdo através do gréfico

seguinte, em que temos uma funcio f em preto, f, em vermelho e f, em azul, onde a < a’.
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Para aplicar o Lema 5.2.1, precisamos mostrar que cada U, é limitado, que lim, U,(f) = f uniformemente
em K e que U, (B[0; 1]) é relativamente compacto para todo a € A.

Primeiro, seja f € B(S;P(S)) ea = {E1,--- ,Eq;s1,- - ,Su} € A. Parax € S, existej € {1,--- ,n}
tal que x € E;. Dai, temos que f,(x) = f(s;). Mas entdo, mines f(s) < fa(x) < maxses f(s). Entao
|Ua(F)| < |Ifll, para toda f € B(S;P(S)). Em outras palavras, |U,| < 1. Isso prova que U, é operador
limitado para todo a € A.

Agora, usaremos a hipétese para mostrar a convergéncia uniforme. De fato, dado ¢ > 0, existe a4 =

{E1,--+ ,En;s1, -+ ,Sn} € Atal que, paracadai € {1,---,n},

sup f(s;) — f(s)| <, Vf €K,

se€E;

Suponhaa’ = {E},--- ,E},; s}, -+ ,s,,} > a. Tomex € S. Dai, existem j € {1,--- ,m} eje {1,---,n} tais

que x € E;, C E;. Entéo,

£ £

[(Uar () (x) = fF) = £ () = f()| < [£(s7) = fs)| + |f(s) = f(x)] < Z+ 1=

uma vez que sy, sj, x € Ej. Assim, ||[Uy (f) — fl| <&/2 <e.
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Resta apenas mostrar que todo U, (B]0; 1]) é relativamente compacto. Tomea = {Ey,--- ,E,; s1,- -+ ,Su} €
A. Seja Y o subespago de B(S; P(S)) gerado por {xk,,- - - , X, }- Temos que U,(B[0;1]) C Y. Além disso,
como ||U,]| < 1, temos que U,(B[0;1]) C By[0;1], onde By[0;1] denota a bola em Y. Mas, pela Propo-
sicdo 2.0.9, como Y tem dimensao finita, By[0;1] é compacta. Como subconjunto fechado de compacto é
compacto, U,(B[0;1]) é relativamente compacto.

Como todas as hipoteses estdo satisfeitas, podemos aplicar o Lema 5.2.1, concluindo assim que K é

relativamente compacto. O

Agora, definiremos o conceito de equicontinuidade para espagos topolégicos: Um subconjunto K C

% (S) é dito equicontinuo em s € S se, para cada € > 0, existe uma vizinhanga V de s tal que

supsup|f(s) — f(1)] < e.

feK teV

Note que esta é uma extensdo natural do conceito de equicontinuidade em espagos métricos. De fato, esta-
mos simplesmente dizendo que qualquer que seja t € V e qualquer que seja f € K, |f(s) — f(f)| < e. Isto
é, para todo ¢ existe uma vizinhanga V' que “funciona” para todas as fung¢oes de K. K é dito simplesmente

equicontinuo se for equicontinuo em todo s € S.

Teorema 5.2.4 (Teorema de Ascoli-Arzela em Espacos Topoldgicos). Seja S espago topolégico Hausdorff com-

pacto. Entdo, K C €(S) é relativamente compacto se, e somente se, é limitado e equicontinuo.

Demonstragao: Comece supondo K limitado e equicontinuo, e seja ¢ > 0 dado. Pela defini¢do de equicon-

tinuidade, para cada x € S, conseguimos obter uma vizinhanga V, tal que

supsup | (x) = f(£)] < 5.

feK teVy

Usando a compacidade de S, obtemos uma cobertura finita S C Vi, U--- UV, . Definimos entdo E; =
Vi, E2 =V, \E1,- - ,En = Vi, \ (E1U---UE,_1). Dessa forma, obtemos n conjuntos disjuntos, de unido
S. Podemos supor, sem perda de generalidade, que todo E; é ndo vazio. Tomamos, entdo, s; € Ey,---,s; €

E,. Paratodoi € {1,---,n} eparat € E;, temos

[f(si) = F(O] < [f(si) = f(xa) + [ f(xi) = F(B)].

Mas, como s;, x;,t € E;,

supsup |f(si) — f(t)| < [f(si) — f(xi)| +supsup |f(x;) — f(£)] < %+ g = e
fEK teE; fEK teE;

Entao,

sup |f(si) — f(H)| <e, VfeKk

teE;
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Como K C €(S) C B(S;P(S)), pela Proposigao 5.2.3, K é relativamente compacto.
Para a reciproca, sabemos pela Proposicdo 2.0.5 que K é totalmente limitado, e portanto limitado. Mais
do que isso, dado ¢ > 0, existem fi,---, f, € K tais que K C B(f1,e/3)U---UB(fy,€/3). Dados € S,
podemos usar a continuidade das fun¢des para obter Vi, - - -, V,, vizinhangas de s tais que, para cada i €
{1, cee, Tl},
fils) = fi() <5 VEeVL

Tomando entdo V = V; N - - - NV, obtemos uma tnica vizinhanga de s que satisfaz a condi¢do acima para

cada cada f;. Dada f € K, existe j € {1,--- ,n} tal que f € B(f;,¢/3). Entdo para todo t € V, vale

£(8) = FOI < 1F(5) = O +1fi(s) = fOI+ O = B < S+5+5 =€

Portanto,
supsup |f(s) — f(1)] <.
feK teV
O que mostra que K é equicontinuo em todo s € S, e portanto é equicontinuo. O
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